Improving the Dilation of a Metric Graph by Adding Edges

Joachim Gudmundsson, Sampson Wong
{"title":"Improving the Dilation of a Metric Graph by Adding Edges","authors":"Joachim Gudmundsson, Sampson Wong","doi":"10.1145/3517807","DOIUrl":null,"url":null,"abstract":"Most of the literature on spanners focuses on building the graph from scratch. This article instead focuses on adding edges to improve an existing graph. A major open problem in this field is: Given a graph embedded in a metric space, and a budget of k edges, which k edges do we add to produce a minimum-dilation graph? The special case where k=1 has been studied in the past, but no major breakthroughs have been made for k > 1. We provide the first positive result, an O(k)-approximation algorithm that runs in O(n3 log n) time.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the literature on spanners focuses on building the graph from scratch. This article instead focuses on adding edges to improve an existing graph. A major open problem in this field is: Given a graph embedded in a metric space, and a budget of k edges, which k edges do we add to produce a minimum-dilation graph? The special case where k=1 has been studied in the past, but no major breakthroughs have been made for k > 1. We provide the first positive result, an O(k)-approximation algorithm that runs in O(n3 log n) time.
通过添加边改进度量图的扩展
大多数关于扳手的文献都侧重于从头构建图形。本文的重点是添加边以改进现有图。该领域的一个主要开放问题是:给定一个嵌入度量空间的图,并且有k条边的预算,我们添加哪k条边来生成最小扩张图?过去对k=1的特殊情况进行了研究,但对于k > 1没有取得重大突破。我们提供了第一个积极的结果,一个O(k)近似算法,运行时间为O(n3 log n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信