Multi-approaches on scrubbing data for medium-sized enterprises

Tauqeer Faiz
{"title":"Multi-approaches on scrubbing data for medium-sized enterprises","authors":"Tauqeer Faiz","doi":"10.1109/ICD47981.2019.9105739","DOIUrl":null,"url":null,"abstract":"Tidy and fit for purpose data are the prerequisite for analyzing data and for guaranteeing good business decisions. Data Scrubbing or data cleaning is the process of identifying errors and inconsistencies in the data and fixing these errors before analyzing the data. Organization's decisions rely on Data Quality which makes data scrubbing a very important step towards their productivity. Untidy data includes; importing data from multiple sources, missing values or corrupt records, data types mismatch, special character removal or discarding duplicates. Current research is lacking the latest data scrubbing techniques practiced by the medium sized enterprises. This article highlights possible data errors, literature review, and data science project life cycle. The document explains how to clean data using Python libraries for exploratory data analysis such as Pandas, NumPy, Scikit- Learn and libraries for data visualization for example matplotlib, Seaborn, and Plotly.","PeriodicalId":277894,"journal":{"name":"2019 International Conference on Digitization (ICD)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Digitization (ICD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICD47981.2019.9105739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tidy and fit for purpose data are the prerequisite for analyzing data and for guaranteeing good business decisions. Data Scrubbing or data cleaning is the process of identifying errors and inconsistencies in the data and fixing these errors before analyzing the data. Organization's decisions rely on Data Quality which makes data scrubbing a very important step towards their productivity. Untidy data includes; importing data from multiple sources, missing values or corrupt records, data types mismatch, special character removal or discarding duplicates. Current research is lacking the latest data scrubbing techniques practiced by the medium sized enterprises. This article highlights possible data errors, literature review, and data science project life cycle. The document explains how to clean data using Python libraries for exploratory data analysis such as Pandas, NumPy, Scikit- Learn and libraries for data visualization for example matplotlib, Seaborn, and Plotly.
中型企业数据清洗的多种方法
整洁和符合目的的数据是分析数据和保证良好业务决策的先决条件。数据清洗或数据清理是在分析数据之前识别数据中的错误和不一致并修复这些错误的过程。组织的决策依赖于数据质量,这使得数据清理成为提高生产力的一个非常重要的步骤。不整洁的数据包括;从多个来源导入数据、缺少值或损坏的记录、数据类型不匹配、删除特殊字符或丢弃重复项。目前的研究缺乏最新的中型企业数据清洗技术。本文重点介绍了可能的数据错误、文献综述和数据科学项目生命周期。该文档解释了如何使用用于探索性数据分析的Python库(如Pandas、NumPy、Scikit- Learn)和用于数据可视化的库(如matplotlib、Seaborn和Plotly)清理数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信