Joint recovery of sparse signals and parameter perturbations with parameterized measurement models

Erik C. Johnson, Douglas L. Jones
{"title":"Joint recovery of sparse signals and parameter perturbations with parameterized measurement models","authors":"Erik C. Johnson, Douglas L. Jones","doi":"10.1109/ICASSP.2013.6638796","DOIUrl":null,"url":null,"abstract":"Many applications involve sparse signals with unknown, continuous parameters; a common example is a signal consisting of several sinusoids of unknown frequency. Applying compressed sensing techniques to these signals requires a highly oversampled dictionary for good approximation, but these dictionaries violate the RIP conditions and produce inconsistent results. We consider recovering both a sparse vector and parameter perturbations from an initial set of parameters. Joint recovery allows for accurate reconstructions without highly oversampled dictionaries. Our algorithm for sparse recovery solves a series of linearized subproblems. Recovery error for noiseless simulated measurements is near zero for coarse dictionaries, but increases with the oversampling. This technique is also used to reconstruct Radio Frequency data. The algorithm estimates sharp peaks and transmitter frequencies, demonstrating the potential practical use of the algorithm on real data.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Many applications involve sparse signals with unknown, continuous parameters; a common example is a signal consisting of several sinusoids of unknown frequency. Applying compressed sensing techniques to these signals requires a highly oversampled dictionary for good approximation, but these dictionaries violate the RIP conditions and produce inconsistent results. We consider recovering both a sparse vector and parameter perturbations from an initial set of parameters. Joint recovery allows for accurate reconstructions without highly oversampled dictionaries. Our algorithm for sparse recovery solves a series of linearized subproblems. Recovery error for noiseless simulated measurements is near zero for coarse dictionaries, but increases with the oversampling. This technique is also used to reconstruct Radio Frequency data. The algorithm estimates sharp peaks and transmitter frequencies, demonstrating the potential practical use of the algorithm on real data.
基于参数化测量模型的稀疏信号和参数扰动联合恢复
许多应用涉及具有未知连续参数的稀疏信号;一个常见的例子是由几个未知频率的正弦波组成的信号。对这些信号应用压缩感知技术需要一个高度过采样的字典来获得良好的近似,但是这些字典违反了RIP条件并产生不一致的结果。我们考虑从一组初始参数中恢复稀疏向量和参数扰动。联合恢复允许准确的重建没有高度过采样字典。我们的稀疏恢复算法解决了一系列线性化的子问题。对于粗糙字典,无噪声模拟测量的恢复误差接近于零,但随着过采样的增加而增加。该技术也用于重建射频数据。该算法估计尖峰和发射机频率,证明了该算法在实际数据上的潜在实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信