Fingerprint pores extraction by using automatic scale selection

Diwakar Agarwal, A. Bansal
{"title":"Fingerprint pores extraction by using automatic scale selection","authors":"Diwakar Agarwal, A. Bansal","doi":"10.1504/ijbm.2020.108483","DOIUrl":null,"url":null,"abstract":"Extraction of fingerprint sweat pores is a critical step in those applications which are based on highly secured features. Pores are varying in scale (size) and evenly distributed along the ridges. It is the main challenge to design a technique which determines the pores of different sizes in the fingerprint image. In this paper, pore extraction algorithm is proposed for high-resolution fingerprint images which utilised multiscale γ-normalised Laplacian of Gaussian (LoG) filter. A block-wise approach is implemented in which each region is filtered at multiple scale values. Scale space theory is applied and candidate pixels of high negative response are identified through local maxima approach. The efficacy of the proposed algorithm is tested by measuring average true detection rate (TDR) and average false detection rate (FDR). Results of the proposed algorithm achieve average TDR and average FDR values as 82.89% and 21.2% respectively which are better in comparison to the state-of-art techniques.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbm.2020.108483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Extraction of fingerprint sweat pores is a critical step in those applications which are based on highly secured features. Pores are varying in scale (size) and evenly distributed along the ridges. It is the main challenge to design a technique which determines the pores of different sizes in the fingerprint image. In this paper, pore extraction algorithm is proposed for high-resolution fingerprint images which utilised multiscale γ-normalised Laplacian of Gaussian (LoG) filter. A block-wise approach is implemented in which each region is filtered at multiple scale values. Scale space theory is applied and candidate pixels of high negative response are identified through local maxima approach. The efficacy of the proposed algorithm is tested by measuring average true detection rate (TDR) and average false detection rate (FDR). Results of the proposed algorithm achieve average TDR and average FDR values as 82.89% and 21.2% respectively which are better in comparison to the state-of-art techniques.
基于自动尺度选择的指纹孔隙提取方法
在那些基于高度安全特征的应用中,指纹汗孔的提取是至关重要的一步。孔隙大小不一,沿脊均匀分布。设计一种能够确定指纹图像中不同大小孔隙的技术是目前面临的主要挑战。提出了一种基于多尺度γ-归一化拉普拉斯高斯(LoG)滤波的高分辨率指纹图像孔隙提取算法。实现了一种分块方法,其中每个区域在多个尺度值上进行过滤。应用尺度空间理论,通过局部极大值法识别高负响应候选像元。通过测量平均真检测率(TDR)和平均假检测率(FDR)来检验该算法的有效性。结果表明,该算法的平均TDR和平均FDR值分别为82.89%和21.2%,优于目前的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信