librec-auto: A Tool for Recommender Systems Experimentation

Nasim Sonboli, M. Mansoury, Ziyue Guo, Shreyas Kadekodi, Weiwen Liu, Zijun Liu, Andrew Schwartz, R. Burke
{"title":"librec-auto: A Tool for Recommender Systems Experimentation","authors":"Nasim Sonboli, M. Mansoury, Ziyue Guo, Shreyas Kadekodi, Weiwen Liu, Zijun Liu, Andrew Schwartz, R. Burke","doi":"10.1145/3459637.3482006","DOIUrl":null,"url":null,"abstract":"Recommender systems are complex. They integrate the individual needs of users with the characteristics of particular domains of application which may span items from large and potentially heterogeneous collections. Extensive experimentation is required to understand the multidimensional properties of recommendation algorithms and the fit between algorithm and application. librec-auto is a tool that automates many aspects of off-line batch recommender system experimentation. It has a large library of state-of-the-art and historical recommendation algorithms and a wide variety of evaluation metrics. It further supports the study of diversity and fairness in recommendation through the integration of re-ranking algorithms and fairness-aware metrics. It supports declarative configuration for reproducible experiment management and supports multiple forms of hyper-parameter optimization.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recommender systems are complex. They integrate the individual needs of users with the characteristics of particular domains of application which may span items from large and potentially heterogeneous collections. Extensive experimentation is required to understand the multidimensional properties of recommendation algorithms and the fit between algorithm and application. librec-auto is a tool that automates many aspects of off-line batch recommender system experimentation. It has a large library of state-of-the-art and historical recommendation algorithms and a wide variety of evaluation metrics. It further supports the study of diversity and fairness in recommendation through the integration of re-ranking algorithms and fairness-aware metrics. It supports declarative configuration for reproducible experiment management and supports multiple forms of hyper-parameter optimization.
librec-auto:一个推荐系统实验的工具
推荐系统是复杂的。它们将用户的个人需求与特定应用程序领域的特征集成在一起,这些领域可能跨越大型且可能异构的集合。为了理解推荐算法的多维特性以及算法与应用之间的匹配,需要进行大量的实验。Librec-auto是一个工具,它可以自动化离线批量推荐系统实验的许多方面。它有一个大型的最先进和历史推荐算法库,以及各种各样的评估指标。通过整合重新排序算法和公平感知指标,进一步支持了推荐多样性和公平性的研究。它支持可重复实验管理的声明式配置,并支持多种形式的超参数优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信