Fingerprinting Smartphone Accelerometers with Traditional Classifiers and Deep Learning Networks

A. Berdich, Patricia Iosif, Camelia Burlacu, A. Anistoroaei, B. Groza
{"title":"Fingerprinting Smartphone Accelerometers with Traditional Classifiers and Deep Learning Networks","authors":"A. Berdich, Patricia Iosif, Camelia Burlacu, A. Anistoroaei, B. Groza","doi":"10.1109/SACI58269.2023.10158600","DOIUrl":null,"url":null,"abstract":"Fingerprinting smartphones using their accelerometers has several applications, including activity recognition, driving style classification and device to device authentication. In this work, we study accelerometer-based smartphone fingerprinting. We gather data from mobile devices placed together to record identical vibrations. Then, we extract time domain features, which we use to train multiple traditional machine learning algorithms based on statistical properties of the data. Finally, we use the raw data in a more complex Convolutional Neural Network and compare the results. To make the investigations more challenging, we discuss fingerprinting both distinct and identical smartphones and reach an accuracy close to 100% with several traditional classifiers.","PeriodicalId":339156,"journal":{"name":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI58269.2023.10158600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fingerprinting smartphones using their accelerometers has several applications, including activity recognition, driving style classification and device to device authentication. In this work, we study accelerometer-based smartphone fingerprinting. We gather data from mobile devices placed together to record identical vibrations. Then, we extract time domain features, which we use to train multiple traditional machine learning algorithms based on statistical properties of the data. Finally, we use the raw data in a more complex Convolutional Neural Network and compare the results. To make the investigations more challenging, we discuss fingerprinting both distinct and identical smartphones and reach an accuracy close to 100% with several traditional classifiers.
指纹识别智能手机加速度计与传统分类器和深度学习网络
使用加速度计的指纹识别智能手机有多种应用,包括活动识别、驾驶风格分类和设备间认证。在这项工作中,我们研究了基于加速度计的智能手机指纹识别。我们从放置在一起的移动设备中收集数据,以记录相同的振动。然后,我们提取时域特征,我们使用这些特征来训练基于数据统计属性的多种传统机器学习算法。最后,我们在一个更复杂的卷积神经网络中使用原始数据,并比较结果。为了使调查更具挑战性,我们讨论了不同和相同智能手机的指纹识别,并使用几个传统分类器达到接近100%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信