A Graph Convolutional Network for Point Cloud Completion

Lei Tan, Daole Wang, Miao Yin, Mingyi Sun, Xiuyang Zhao, Xiangyu Kong
{"title":"A Graph Convolutional Network for Point Cloud Completion","authors":"Lei Tan, Daole Wang, Miao Yin, Mingyi Sun, Xiuyang Zhao, Xiangyu Kong","doi":"10.1145/3561613.3561616","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a graph convolutional network for point cloud completion (GCNC), predicting the missing region. The local information is embedded into the global features by a graph neural network module, which comprehensively captures relations among points through a graph-based context aggregation. On the other hand, the skip connection effectively utilizes the local structural details of incomplete point clouds during the inference of multi-scale missing parts, which preserves the detailed structure of the complete point cloud. Extensive experiments on the ShapeNet and ModelNet40 benchmark show that the proposed approach outperforms the previous baselines, highlighting its effectiveness. Our quantitative and qualitative analysis confirms the effectiveness of each part of the method.","PeriodicalId":348024,"journal":{"name":"Proceedings of the 5th International Conference on Control and Computer Vision","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Control and Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3561613.3561616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a graph convolutional network for point cloud completion (GCNC), predicting the missing region. The local information is embedded into the global features by a graph neural network module, which comprehensively captures relations among points through a graph-based context aggregation. On the other hand, the skip connection effectively utilizes the local structural details of incomplete point clouds during the inference of multi-scale missing parts, which preserves the detailed structure of the complete point cloud. Extensive experiments on the ShapeNet and ModelNet40 benchmark show that the proposed approach outperforms the previous baselines, highlighting its effectiveness. Our quantitative and qualitative analysis confirms the effectiveness of each part of the method.
点云补全的图卷积网络
本文提出了一种用于点云补全(GCNC)的图卷积网络,用于预测缺失区域。通过图形神经网络模块将局部信息嵌入到全局特征中,通过基于图形的上下文聚合全面捕获点之间的关系。另一方面,跳跃连接在多尺度缺失部分推理过程中有效利用了不完整点云的局部结构细节,保留了完整点云的细节结构。在ShapeNet和ModelNet40基准上的大量实验表明,所提出的方法优于先前的基准,突出了其有效性。我们的定量和定性分析证实了该方法每个部分的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信