Gait Pattern Generation of Hexapod-Type Microrobot Using Interstitial Cell Model Based Hardware Neural Networks IC

Mika Kurosawa, Takuro Sasaki, Masaya Ohara, Taisuke Tanaka, Yuichiro Hayakawa, M. Kaneko, F. Uchikoba, K. Saeki, Ken Saito
{"title":"Gait Pattern Generation of Hexapod-Type Microrobot Using Interstitial Cell Model Based Hardware Neural Networks IC","authors":"Mika Kurosawa, Takuro Sasaki, Masaya Ohara, Taisuke Tanaka, Yuichiro Hayakawa, M. Kaneko, F. Uchikoba, K. Saeki, Ken Saito","doi":"10.23919/ICEP.2019.8733603","DOIUrl":null,"url":null,"abstract":"The authors are studying a robot controlling system using hardware neural networks (HNN). Previously, the authors succeeded to locomote the quadruped-type and the hexapod-type microrobot systems using the HNN integrated circuit (IC). The HNN IC outputs four-phase pulse waveforms to drive both microrobot systems. However, gait patterns need 1.0 s pulse period which requires large capacitors. A large capacitor could not mount on IC; therefore, the external capacitors mounted on the circuit board. The further miniaturization of the HNN IC needs to minimize the capacitors. In this paper, the authors constructed HNN which can generate a large pulse period without using large capacitors. The interstitial cell model is used as a basic element of the HNN to generate a large time constant. The authors designed two types of HNN which can generate a tripod gait pattern and a ripple gait pattern which are typical walking patterns of insects. As a result, designed HNN can generate gait patterns without using external capacitors. The capacitors could construct inside the IC using the interstitial cell model.","PeriodicalId":213025,"journal":{"name":"2019 International Conference on Electronics Packaging (ICEP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electronics Packaging (ICEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICEP.2019.8733603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The authors are studying a robot controlling system using hardware neural networks (HNN). Previously, the authors succeeded to locomote the quadruped-type and the hexapod-type microrobot systems using the HNN integrated circuit (IC). The HNN IC outputs four-phase pulse waveforms to drive both microrobot systems. However, gait patterns need 1.0 s pulse period which requires large capacitors. A large capacitor could not mount on IC; therefore, the external capacitors mounted on the circuit board. The further miniaturization of the HNN IC needs to minimize the capacitors. In this paper, the authors constructed HNN which can generate a large pulse period without using large capacitors. The interstitial cell model is used as a basic element of the HNN to generate a large time constant. The authors designed two types of HNN which can generate a tripod gait pattern and a ripple gait pattern which are typical walking patterns of insects. As a result, designed HNN can generate gait patterns without using external capacitors. The capacitors could construct inside the IC using the interstitial cell model.
基于间质细胞模型的硬件神经网络生成六足微型机器人步态模式
作者正在研究一种基于硬件神经网络(HNN)的机器人控制系统。此前,作者利用HNN集成电路(IC)成功地实现了四足和六足微型机器人系统的移动。HNN集成电路输出四相脉冲波形来驱动两个微型机器人系统。然而,步态模式需要1.0 s的脉冲周期,需要较大的电容器。在集成电路上不能安装大的电容器;因此,将外部电容器安装在电路板上。HNN集成电路的进一步小型化需要尽量减少电容器。在本文中,作者构建了一种不用大电容就能产生大脉冲周期的HNN。利用间质细胞模型作为HNN的基本元素,产生较大的时间常数。作者设计了两种类型的HNN,可以产生典型的昆虫行走模式三脚架步态和波纹步态。因此,设计的HNN可以在不使用外部电容器的情况下生成步态模式。采用间质细胞模型在集成电路内部构建电容器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信