N. Koyama, K. Ohara, Akiyuki Hasegawa, T. Takubo, Y. Mae, T. Arai
{"title":"Multiple cell suction and supply system for automated cell manipulation on microfluidic channel","authors":"N. Koyama, K. Ohara, Akiyuki Hasegawa, T. Takubo, Y. Mae, T. Arai","doi":"10.1109/CASE.2011.6042486","DOIUrl":null,"url":null,"abstract":"Advances in biology have clarified the details of many phenomena and their results have been applied to many fields. However, in these fields, applications require dexterous and skillful manipulation. Hence, realizing high productivity is still difficult. To solve this problem, assisted cell manipulation and automated systems have been researched and microfluidic channel technology has been used in these fields. Most research focuses on only one part of the cell manipulation process, such as the cutting or sorting of cells. In the meantime, less attention has been paid to methods of supplying the target cells to a microfluidic channel. We have developed a multiple cell supply system for the microfluidic channel to realize automated cell cloning. This system sucks bovine egg cells with a size of 100[µm] and sends them to the microfluidic channel, then finally sends them to the cell manipulation part. It consists of a microfluidic channel, a pump, solenoid valves, camera systems, and an automatic stage. The cell supply action can be realized by controlling these parts through a computer program.","PeriodicalId":236208,"journal":{"name":"2011 IEEE International Conference on Automation Science and Engineering","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2011.6042486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Advances in biology have clarified the details of many phenomena and their results have been applied to many fields. However, in these fields, applications require dexterous and skillful manipulation. Hence, realizing high productivity is still difficult. To solve this problem, assisted cell manipulation and automated systems have been researched and microfluidic channel technology has been used in these fields. Most research focuses on only one part of the cell manipulation process, such as the cutting or sorting of cells. In the meantime, less attention has been paid to methods of supplying the target cells to a microfluidic channel. We have developed a multiple cell supply system for the microfluidic channel to realize automated cell cloning. This system sucks bovine egg cells with a size of 100[µm] and sends them to the microfluidic channel, then finally sends them to the cell manipulation part. It consists of a microfluidic channel, a pump, solenoid valves, camera systems, and an automatic stage. The cell supply action can be realized by controlling these parts through a computer program.