Lyapunov exponents of time series in finite amplitude electroconvection

R. Chicón, A.T. Perez, A. Castellanos
{"title":"Lyapunov exponents of time series in finite amplitude electroconvection","authors":"R. Chicón, A.T. Perez, A. Castellanos","doi":"10.1109/CEIDP.2001.963595","DOIUrl":null,"url":null,"abstract":"We analyze the nonlinear time series obtained from numerical simulation of electroconvection induced by unipolar injection. These time series are non-steady and non-periodic and the dimension of the strange attractor seems to be very high. We focus our study in the computation of the maximal Lyapunov exponents, which are a measure of the divergence of two trajectories in the attractor. We have studied the evolution of the maximal Lyapunov exponent as the instability parameter varies. In all the series we found a positive maximal Lyapunov exponent, which is a strong evidence of chaos.","PeriodicalId":112180,"journal":{"name":"2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.01CH37225)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.01CH37225)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP.2001.963595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We analyze the nonlinear time series obtained from numerical simulation of electroconvection induced by unipolar injection. These time series are non-steady and non-periodic and the dimension of the strange attractor seems to be very high. We focus our study in the computation of the maximal Lyapunov exponents, which are a measure of the divergence of two trajectories in the attractor. We have studied the evolution of the maximal Lyapunov exponent as the instability parameter varies. In all the series we found a positive maximal Lyapunov exponent, which is a strong evidence of chaos.
有限振幅电对流中时间序列的Lyapunov指数
对单极注入电对流的非线性时间序列进行了分析。这些时间序列是非稳定和非周期的,奇异吸引子的维数似乎很高。我们集中研究了极大李雅普诺夫指数的计算,它是吸引子中两条轨迹散度的度量。研究了最大李雅普诺夫指数随不稳定性参数变化的演化。在所有的级数中,我们发现了一个正的极大李雅普诺夫指数,这是混沌的有力证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信