Prospects on Solving an Optimal Control Problem with Bounded Uncertainties on Parameters using Interval Arithmetics

Etienne Bertin, E. Brendel, B. Hérissé, Julien Alexandre Dit Sandretto, Alexandre Chapoutot
{"title":"Prospects on Solving an Optimal Control Problem with Bounded Uncertainties on Parameters using Interval Arithmetics","authors":"Etienne Bertin, E. Brendel, B. Hérissé, Julien Alexandre Dit Sandretto, Alexandre Chapoutot","doi":"10.14232/ACTACYB.285798","DOIUrl":null,"url":null,"abstract":"An interval method based on the Pontryagin Minimum Principle is proposed to enclose the solutions of an optimal control problem with embedded bounded uncertainties. This method is used to compute an enclosure of all optimal trajectories of the problem, as well as open loop and closed loop enclosures meant to enclose a concrete system using an optimal control regulator with inaccurate knowledge of the parameters. The differences in geometry of these enclosures are exposed, as well as some applications. For instance guaranteeing that the given optimal control problem will yield a satisfactory trajectory for any realization of the uncertainties or on the contrary that the problem is unsuitable and needs to be adjusted.","PeriodicalId":187125,"journal":{"name":"Acta Cybern.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/ACTACYB.285798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An interval method based on the Pontryagin Minimum Principle is proposed to enclose the solutions of an optimal control problem with embedded bounded uncertainties. This method is used to compute an enclosure of all optimal trajectories of the problem, as well as open loop and closed loop enclosures meant to enclose a concrete system using an optimal control regulator with inaccurate knowledge of the parameters. The differences in geometry of these enclosures are exposed, as well as some applications. For instance guaranteeing that the given optimal control problem will yield a satisfactory trajectory for any realization of the uncertainties or on the contrary that the problem is unsuitable and needs to be adjusted.
区间算法求解参数有界不确定性最优控制问题的展望
提出了一种基于庞特里亚金最小值原理的区间方法,对一类具有内嵌有界不确定性的最优控制问题的解进行封闭。该方法用于计算问题的所有最优轨迹的外壳,以及开环和闭环外壳,这意味着使用参数不准确的最优控制调节器来封装一个具体系统。这些外壳的几何形状的差异是暴露的,以及一些应用。例如,保证给定的最优控制问题对于任何不确定性的实现都将产生令人满意的轨迹,或者相反,该问题不适合并且需要进行调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信