Efficient object annotation for surveillance and automotive applications

S. Swetha, Anand Mishra, Guruprasad M. Hegde, C. V. Jawahar
{"title":"Efficient object annotation for surveillance and automotive applications","authors":"S. Swetha, Anand Mishra, Guruprasad M. Hegde, C. V. Jawahar","doi":"10.1109/WACVW.2016.7470117","DOIUrl":null,"url":null,"abstract":"Accurately annotated large video data is critical for the development of reliable surveillance and automotive related vision solutions. In this work, we propose an efficient and yet accurate annotation scheme for objects in videos (pedestrians in this case) with minimal supervision. We annotate objects with tight bounding boxes. We propagate the annotations across the frames with a self training based approach. An energy minimization scheme for the segmentation is the central component of our method. Unlike the popular grab cut like segmentation schemes, we demand minimal user intervention. Since our annotation is built on an accurate segmentation, our bounding boxes are tight. We validate the performance of our approach on multiple publicly available datasets.","PeriodicalId":185674,"journal":{"name":"2016 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2016.7470117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Accurately annotated large video data is critical for the development of reliable surveillance and automotive related vision solutions. In this work, we propose an efficient and yet accurate annotation scheme for objects in videos (pedestrians in this case) with minimal supervision. We annotate objects with tight bounding boxes. We propagate the annotations across the frames with a self training based approach. An energy minimization scheme for the segmentation is the central component of our method. Unlike the popular grab cut like segmentation schemes, we demand minimal user intervention. Since our annotation is built on an accurate segmentation, our bounding boxes are tight. We validate the performance of our approach on multiple publicly available datasets.
用于监视和汽车应用的高效对象注释
准确标注的大型视频数据对于开发可靠的监控和汽车相关视觉解决方案至关重要。在这项工作中,我们提出了一种高效而准确的视频对象(在本例中为行人)注释方案,只需最少的监督。我们用紧密的边界框来注释对象。我们使用基于自训练的方法在帧之间传播注释。能量最小化分割方案是我们方法的核心组成部分。与流行的分割方案不同,我们要求最小的用户干预。由于我们的注释是建立在精确分割的基础上的,所以我们的边界框是紧密的。我们在多个公开可用的数据集上验证了我们的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信