A self-sizing framework for adaptive resource allocation in label-switched networks

W. Shen, M. Devetsikiotis
{"title":"A self-sizing framework for adaptive resource allocation in label-switched networks","authors":"W. Shen, M. Devetsikiotis","doi":"10.1109/MASCOT.2002.1167111","DOIUrl":null,"url":null,"abstract":"For adaptive resource allocation to maintain its crucial timing requirements in large-scale networks, fast analysis and synthesis algorithms are required in order to process freshly collected traffic data. In this paper we build on previous work to introduce a general measurement-based self-sizing framework for resource allocation in label-switched networks. Furthermore, we study the scaling behavior of the simulated annealing variant used in the analysis and synthesis algorithm. We propose a hierarchical approach to improve adaptation performance for large networks and include extensive simulation results indicating significant improvement in performance as networks get larger.","PeriodicalId":384900,"journal":{"name":"Proceedings. 10th IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 10th IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOT.2002.1167111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

For adaptive resource allocation to maintain its crucial timing requirements in large-scale networks, fast analysis and synthesis algorithms are required in order to process freshly collected traffic data. In this paper we build on previous work to introduce a general measurement-based self-sizing framework for resource allocation in label-switched networks. Furthermore, we study the scaling behavior of the simulated annealing variant used in the analysis and synthesis algorithm. We propose a hierarchical approach to improve adaptation performance for large networks and include extensive simulation results indicating significant improvement in performance as networks get larger.
标签交换网络中自适应资源分配的自调整框架
在大规模网络中,为了使自适应资源分配保持其关键的时序要求,需要快速的分析和综合算法来处理新采集的交通数据。在本文中,我们在以前的工作的基础上,引入了一个通用的基于测量的自规模框架,用于标签交换网络中的资源分配。此外,我们还研究了用于分析和综合算法的模拟退火变量的标度行为。我们提出了一种分层方法来提高大型网络的自适应性能,并包括广泛的仿真结果,表明随着网络变大,性能会有显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信