Pseudo-Random Number Generation on GP-GPU

Jonathan Passerat-Palmbach, C. Mazel, D. Hill
{"title":"Pseudo-Random Number Generation on GP-GPU","authors":"Jonathan Passerat-Palmbach, C. Mazel, D. Hill","doi":"10.1109/PADS.2011.5936751","DOIUrl":null,"url":null,"abstract":"Random number generation is a key element of stochastic simulations. It has been widely studied for sequential applications purposes, enabling us to reliably use pseudo-random numbers in this case. Unfortunately, we cannot be so enthusiastic when dealing with parallel stochastic simulations. Many applications still neglect random stream parallelization, leading to potentially biased results. Particular parallel execution platforms, such as Graphics Processing Units (GPUs), add their constraints to those of Pseudo-Random Number Generators (PRNGs) used in parallel. It results in a situation where potential biases can be combined to performance drops when parallelization of random streams has not been carried out rigorously. Here, we propose criteria guiding the design of good GPU-enabled PRNGs. We enhance our comments with a study of the techniques aiming to correctly parallelize random streams, in the context of GPU-enabled stochastic simulations.","PeriodicalId":330788,"journal":{"name":"2011 IEEE Workshop on Principles of Advanced and Distributed Simulation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Principles of Advanced and Distributed Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PADS.2011.5936751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Random number generation is a key element of stochastic simulations. It has been widely studied for sequential applications purposes, enabling us to reliably use pseudo-random numbers in this case. Unfortunately, we cannot be so enthusiastic when dealing with parallel stochastic simulations. Many applications still neglect random stream parallelization, leading to potentially biased results. Particular parallel execution platforms, such as Graphics Processing Units (GPUs), add their constraints to those of Pseudo-Random Number Generators (PRNGs) used in parallel. It results in a situation where potential biases can be combined to performance drops when parallelization of random streams has not been carried out rigorously. Here, we propose criteria guiding the design of good GPU-enabled PRNGs. We enhance our comments with a study of the techniques aiming to correctly parallelize random streams, in the context of GPU-enabled stochastic simulations.
GP-GPU伪随机数生成
随机数生成是随机模拟的一个重要组成部分。它已经被广泛研究用于顺序应用程序,使我们能够在这种情况下可靠地使用伪随机数。不幸的是,在处理并行随机模拟时,我们不能如此热情。许多应用程序仍然忽略随机流并行化,从而导致潜在的偏差结果。特定的并行执行平台,如图形处理单元(gpu),将它们的约束添加到并行使用的伪随机数生成器(prng)的约束中。当没有严格执行随机流的并行化时,可能会导致潜在的偏差导致性能下降。在这里,我们提出了指导设计良好的gpu使能prng的标准。我们通过研究旨在正确并行化随机流的技术来增强我们的评论,在支持gpu的随机模拟的背景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信