Dynamic load balancing in multi-agent spatial simulation

Bhargav A. Mistry, M. Fukuda
{"title":"Dynamic load balancing in multi-agent spatial simulation","authors":"Bhargav A. Mistry, M. Fukuda","doi":"10.1109/PACRIM.2015.7334824","DOIUrl":null,"url":null,"abstract":"This paper presents dynamic load balancing in a parallelizing library for multi-agent spatial simulation (named MASS). Our load-balancing algorithms calculate per-thread CPU load right after every function call and adjust a data size to be passed to each thread for the next function call. We implemented three different thread-based load-balancing algorithms, each using (1) an entire history, (2) a recent time window and (3) a slope of the CPU loads. The paper presents our implementation of these three algorithms in MASS as well as performance evaluation with two multithreaded applications: Wave2D and SugarScape. Furthermore, to demonstrate the slope-based algorithm's superiority to the other two, we compared them over a cluster of computing nodes.","PeriodicalId":350052,"journal":{"name":"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2015.7334824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents dynamic load balancing in a parallelizing library for multi-agent spatial simulation (named MASS). Our load-balancing algorithms calculate per-thread CPU load right after every function call and adjust a data size to be passed to each thread for the next function call. We implemented three different thread-based load-balancing algorithms, each using (1) an entire history, (2) a recent time window and (3) a slope of the CPU loads. The paper presents our implementation of these three algorithms in MASS as well as performance evaluation with two multithreaded applications: Wave2D and SugarScape. Furthermore, to demonstrate the slope-based algorithm's superiority to the other two, we compared them over a cluster of computing nodes.
多智能体空间仿真中的动态负载平衡
提出了一种多智能体空间仿真并行化库(MASS)的动态负载平衡方法。我们的负载平衡算法在每次函数调用后计算每个线程的CPU负载,并调整要传递给每个线程的数据大小,以便下一次函数调用。我们实现了三种不同的基于线程的负载平衡算法,每种算法使用(1)整个历史记录,(2)最近的时间窗口和(3)CPU负载的斜率。本文介绍了这三种算法在MASS中的实现,以及两个多线程应用程序(Wave2D和SugarScape)的性能评估。此外,为了证明基于斜率的算法相对于其他两种算法的优越性,我们在一个计算节点集群上对它们进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信