FDeblur-GAN: Fingerprint Deblurring using Generative Adversarial Network

Amol S. Joshi, Ali Dabouei, J. Dawson, N. Nasrabadi
{"title":"FDeblur-GAN: Fingerprint Deblurring using Generative Adversarial Network","authors":"Amol S. Joshi, Ali Dabouei, J. Dawson, N. Nasrabadi","doi":"10.1109/IJCB52358.2021.9484406","DOIUrl":null,"url":null,"abstract":"While working with fingerprint images acquired from crime scenes, mobile cameras, or low-quality sensors, it becomes difficult for automated identification systems to verify the identity due to image blur and distortion. We propose a fingerprint deblurring model FDeblur-GAN, based on the conditional Generative Adversarial Networks (cGANs) and multi-stage framework of the stack GAN. Additionally, we integrate two auxiliary sub-networks into the model for the deblurring task. The first sub-network is a ridge extractor model. It is added to generate ridge maps to ensure that fingerprint information and minutiae are preserved in the deblurring process and prevent the model from generating erroneous minutiae. The second sub-network is a verifier that helps the generator to preserve the ID information during the generation process. Using a database of blurred fingerprints and corresponding ridge maps, the deep network learns to deblur from the input blurry samples. We evaluate the proposed method in combination with two different fingerprint matching algorithms. We achieved an accuracy of 95.18% on our fingerprint database for the task of matching deblurred and ground truth fingerprints.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

While working with fingerprint images acquired from crime scenes, mobile cameras, or low-quality sensors, it becomes difficult for automated identification systems to verify the identity due to image blur and distortion. We propose a fingerprint deblurring model FDeblur-GAN, based on the conditional Generative Adversarial Networks (cGANs) and multi-stage framework of the stack GAN. Additionally, we integrate two auxiliary sub-networks into the model for the deblurring task. The first sub-network is a ridge extractor model. It is added to generate ridge maps to ensure that fingerprint information and minutiae are preserved in the deblurring process and prevent the model from generating erroneous minutiae. The second sub-network is a verifier that helps the generator to preserve the ID information during the generation process. Using a database of blurred fingerprints and corresponding ridge maps, the deep network learns to deblur from the input blurry samples. We evaluate the proposed method in combination with two different fingerprint matching algorithms. We achieved an accuracy of 95.18% on our fingerprint database for the task of matching deblurred and ground truth fingerprints.
基于生成对抗网络的指纹去模糊
自动识别系统在处理从犯罪现场、移动相机或低质量传感器获取的指纹图像时,由于图像模糊和失真,很难验证身份。基于条件生成对抗网络(cgan)和堆叠GAN的多阶段框架,提出了一种指纹去模糊模型FDeblur-GAN。此外,我们将两个辅助子网络集成到模型中用于去模糊任务。第一个子网络是脊提取模型。为了保证去模糊过程中指纹信息和细节被保留,防止模型产生错误的细节,在生成脊图时加入了该算法。第二个子网络是一个验证器,它帮助生成器在生成过程中保存ID信息。使用模糊指纹数据库和相应的脊图,深度网络从输入的模糊样本中学习去模糊。我们结合两种不同的指纹匹配算法对该方法进行了评估。在我们的指纹数据库中,对去模糊指纹和真实指纹进行匹配,准确率达到95.18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信