Curriculum Integration of the Canadian Engineering Grand Challenges in a First-year Undergraduate Design Course Using Multi-layered Peer Learning: A Methodology
Menatalla Ahmed, A. Mowafy, Lina Yañez Jaramillo, Marnie V. Jamieson
{"title":"Curriculum Integration of the Canadian Engineering Grand Challenges in a First-year Undergraduate Design Course Using Multi-layered Peer Learning: A Methodology","authors":"Menatalla Ahmed, A. Mowafy, Lina Yañez Jaramillo, Marnie V. Jamieson","doi":"10.24908/pceea.vi.15957","DOIUrl":null,"url":null,"abstract":"This paper introduces a methodology to investigate the impact of utilizing multilayered peer learning pedagogical strategies to integrate the Canadian Engineering Grand Challenges into a large first-year engineering design course. The Canadian Engineering Grand Challenges (CEGC) evolved from the seventeen UN sustainable development goals (UNSDG). The CEGC focus on achieving access to safe water; resilient infrastructure; sustainable energy, industry, and cities; and inclusive STEM education. The incorporation of the CEGC into higher education can be viewed as a tool to empower students to understand the significance of engineering in society with respect to the achievement of the UNSDG. Consequently, their inclusion in the first-year engineering education curriculum serves to engage students with urgent and complex societal problems and the socio-contextual impact of engineering decisions and designs. Peer learning has regularly been applied as an active learning strategy, often with smaller class sizes. A multilayered peer learning strategy was implemented to engage students with the CEGC in a large class of ~1100 students. This strategy is reviewed with respect to delivery logistics and observed efficacy.","PeriodicalId":314914,"journal":{"name":"Proceedings of the Canadian Engineering Education Association (CEEA)","volume":"10 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Canadian Engineering Education Association (CEEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24908/pceea.vi.15957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a methodology to investigate the impact of utilizing multilayered peer learning pedagogical strategies to integrate the Canadian Engineering Grand Challenges into a large first-year engineering design course. The Canadian Engineering Grand Challenges (CEGC) evolved from the seventeen UN sustainable development goals (UNSDG). The CEGC focus on achieving access to safe water; resilient infrastructure; sustainable energy, industry, and cities; and inclusive STEM education. The incorporation of the CEGC into higher education can be viewed as a tool to empower students to understand the significance of engineering in society with respect to the achievement of the UNSDG. Consequently, their inclusion in the first-year engineering education curriculum serves to engage students with urgent and complex societal problems and the socio-contextual impact of engineering decisions and designs. Peer learning has regularly been applied as an active learning strategy, often with smaller class sizes. A multilayered peer learning strategy was implemented to engage students with the CEGC in a large class of ~1100 students. This strategy is reviewed with respect to delivery logistics and observed efficacy.