Achintya Kundu, L. Wynter, Rhui Dih Lee, L. A. Bathen
{"title":"Transfer-Once-For-All: AI Model Optimization for Edge","authors":"Achintya Kundu, L. Wynter, Rhui Dih Lee, L. A. Bathen","doi":"10.1109/EDGE60047.2023.00017","DOIUrl":null,"url":null,"abstract":"Weight-sharing neural architecture search aims to optimize a configurable neural network model (supernet) for a variety of deployment scenarios across many devices with different resource constraints. Existing approaches use evolutionary search to extract models of different sizes from a supernet trained on a very large data set, and then fine-tune the extracted models on the typically small, real-world data set of interest. The computational cost of training thus grows linearly with the number of different model deployment scenarios. Hence, we propose Transfer-Once-For-All (TOFA) for supernet-style training on small data sets with constant computational training cost over any number of edge deployment scenarios. Given a task, TOFA obtains custom neural networks, both the topology and the weights, optimized for any number of edge deployment scenarios. To overcome the challenges arising from small data, TOFA utilizes a unified semi-supervised training loss to simultaneously train all subnets within the supernet, coupled with on-the-fly architecture selection at deployment time.","PeriodicalId":369407,"journal":{"name":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE60047.2023.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Weight-sharing neural architecture search aims to optimize a configurable neural network model (supernet) for a variety of deployment scenarios across many devices with different resource constraints. Existing approaches use evolutionary search to extract models of different sizes from a supernet trained on a very large data set, and then fine-tune the extracted models on the typically small, real-world data set of interest. The computational cost of training thus grows linearly with the number of different model deployment scenarios. Hence, we propose Transfer-Once-For-All (TOFA) for supernet-style training on small data sets with constant computational training cost over any number of edge deployment scenarios. Given a task, TOFA obtains custom neural networks, both the topology and the weights, optimized for any number of edge deployment scenarios. To overcome the challenges arising from small data, TOFA utilizes a unified semi-supervised training loss to simultaneously train all subnets within the supernet, coupled with on-the-fly architecture selection at deployment time.