{"title":"Suitable Crop Prediction based on affecting parameters using Naïve Bayes Classification Machine Learning Technique","authors":"Latha Banda, Aarushi Rai, Ankit Kansal, Animesh Kumar Vashisth","doi":"10.1109/ICDT57929.2023.10150814","DOIUrl":null,"url":null,"abstract":"Agriculture is one of the most important occupations for the majority of people in the world’s second largest populated country, India. However, due to a lack of education, accurate information, and India's rapid climate change, farmers frequently produce the same crops or the incorrect crops, regardless of whether they are appropriate given the soil, climate, and other elements in that particular place or not. This has caused an impact negatively on agricultural crop efficiency and output over the past few decades. Predicting the absolutely correct crops to grow based on the most important parameters for crop production would be of good help to farmers in choosing the right crops, improving crop quality, production and yield. In order to tackle the above problem, we have worked on a project using Naive Bayes Classification Machine Learning algorithm and Web Scraping. Our project consists of a friendly interactive chatbot with which the farmers can easily interact. The chatbot would make the farmer to provide some of the important parameters for crop production and would also fetch real time data through Web Scraping. The results of the crop prediction would be available to the farmer through that chatbot itself. By analyzing the parameters such as current weather conditions, location, soil, season and many more, our crop prediction system will be able to predict the right crops for the farmers to grow. This project will help to bridge the digital gap between farmers and right information and will help them to make smart choices about their crops to reduce the chances of crop failures.","PeriodicalId":266681,"journal":{"name":"2023 International Conference on Disruptive Technologies (ICDT)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Disruptive Technologies (ICDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDT57929.2023.10150814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Agriculture is one of the most important occupations for the majority of people in the world’s second largest populated country, India. However, due to a lack of education, accurate information, and India's rapid climate change, farmers frequently produce the same crops or the incorrect crops, regardless of whether they are appropriate given the soil, climate, and other elements in that particular place or not. This has caused an impact negatively on agricultural crop efficiency and output over the past few decades. Predicting the absolutely correct crops to grow based on the most important parameters for crop production would be of good help to farmers in choosing the right crops, improving crop quality, production and yield. In order to tackle the above problem, we have worked on a project using Naive Bayes Classification Machine Learning algorithm and Web Scraping. Our project consists of a friendly interactive chatbot with which the farmers can easily interact. The chatbot would make the farmer to provide some of the important parameters for crop production and would also fetch real time data through Web Scraping. The results of the crop prediction would be available to the farmer through that chatbot itself. By analyzing the parameters such as current weather conditions, location, soil, season and many more, our crop prediction system will be able to predict the right crops for the farmers to grow. This project will help to bridge the digital gap between farmers and right information and will help them to make smart choices about their crops to reduce the chances of crop failures.