FastSwap: A Lightweight One-Stage Framework for Real-Time Face Swapping

Sahng-Min Yoo, Taehyean Choi, Jae-Woo Choi, Jong-Hwan Kim
{"title":"FastSwap: A Lightweight One-Stage Framework for Real-Time Face Swapping","authors":"Sahng-Min Yoo, Taehyean Choi, Jae-Woo Choi, Jong-Hwan Kim","doi":"10.1109/WACV56688.2023.00355","DOIUrl":null,"url":null,"abstract":"Recent face swapping frameworks have achieved high-fidelity results. However, the previous works suffer from high computation costs due to the deep structure and the use of off-the-shelf networks. To overcome such problems and achieve real-time face swapping, we propose a lightweight one-stage framework, FastSwap. We design a shallow network trained in a self-supervised manner without any manual annotations. The core of our framework is a novel decoder block, called Triple Adaptive Normalization (TAN) block, which effectively integrates the identity and pose information. Besides, we propose a novel data augmentation and switch-test strategy to extract the attributes from the target image, which further enables controllable attribute editing. Extensive experiments on VoxCeleb2 and wild faces demonstrate that our framework generates high-fidelity face swapping results in 123.22 FPS and better preserves the identity, pose, and attributes than other state-of-the-art methods. Furthermore, we conduct an in-depth study to demonstrate the effectiveness of our proposal.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent face swapping frameworks have achieved high-fidelity results. However, the previous works suffer from high computation costs due to the deep structure and the use of off-the-shelf networks. To overcome such problems and achieve real-time face swapping, we propose a lightweight one-stage framework, FastSwap. We design a shallow network trained in a self-supervised manner without any manual annotations. The core of our framework is a novel decoder block, called Triple Adaptive Normalization (TAN) block, which effectively integrates the identity and pose information. Besides, we propose a novel data augmentation and switch-test strategy to extract the attributes from the target image, which further enables controllable attribute editing. Extensive experiments on VoxCeleb2 and wild faces demonstrate that our framework generates high-fidelity face swapping results in 123.22 FPS and better preserves the identity, pose, and attributes than other state-of-the-art methods. Furthermore, we conduct an in-depth study to demonstrate the effectiveness of our proposal.
FastSwap:用于实时人脸交换的轻量级单阶段框架
最近的人脸交换框架已经取得了高保真的效果。然而,以往的工作由于结构较深和使用现成的网络,导致计算成本较高。为了克服这些问题并实现实时人脸交换,我们提出了一个轻量级的单阶段框架FastSwap。我们设计了一个以自监督方式训练的浅网络,不需要任何人工注释。该框架的核心是一种新的解码器块,称为三重自适应归一化(TAN)块,它有效地集成了身份信息和姿态信息。此外,我们提出了一种新的数据增强和切换测试策略,从目标图像中提取属性,进一步实现了属性的可控编辑。在VoxCeleb2和野生人脸上的大量实验表明,我们的框架在123.22 FPS内生成高保真的人脸交换结果,并且比其他最先进的方法更好地保留了身份,姿势和属性。此外,我们进行了深入的研究,以证明我们的建议的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信