Automatic Waterline Extraction of Tidal Flats from SAR Images Based on Deep Convolutional Neural Networks

Shuangshang Zhang, Qinghong Xu, Xiaofeng Li
{"title":"Automatic Waterline Extraction of Tidal Flats from SAR Images Based on Deep Convolutional Neural Networks","authors":"Shuangshang Zhang, Qinghong Xu, Xiaofeng Li","doi":"10.1109/piers55526.2022.9792855","DOIUrl":null,"url":null,"abstract":"In this study, we proposed an automatic waterline signature extraction method based on deep convolutional neural networks (DCNNs). Our objective is to provide a rapid and straightforward to use method that can tackle the waterline signature extraction from large-scale tidal flats in Sentinel-1 SAR images without re-training or manual interference. The statistical results show this DCNN-based method has appreciable accuracy for efficient extraction of waterline in SAR images even under complex imaging conditions (the mean precision and recall are 0.81 and 0.88, respectively), implying that this method is potential for rapid analysis of tidal flat topography evolution by using the waterline method.","PeriodicalId":422383,"journal":{"name":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/piers55526.2022.9792855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we proposed an automatic waterline signature extraction method based on deep convolutional neural networks (DCNNs). Our objective is to provide a rapid and straightforward to use method that can tackle the waterline signature extraction from large-scale tidal flats in Sentinel-1 SAR images without re-training or manual interference. The statistical results show this DCNN-based method has appreciable accuracy for efficient extraction of waterline in SAR images even under complex imaging conditions (the mean precision and recall are 0.81 and 0.88, respectively), implying that this method is potential for rapid analysis of tidal flat topography evolution by using the waterline method.
基于深度卷积神经网络的SAR图像潮滩水线自动提取
在这项研究中,我们提出了一种基于深度卷积神经网络(DCNNs)的水线特征自动提取方法。我们的目标是提供一种快速和直接使用的方法,可以解决Sentinel-1 SAR图像中大尺度潮滩的水线特征提取问题,而无需重新训练或人工干扰。统计结果表明,即使在复杂的成像条件下,基于dcnn的方法也能有效提取SAR图像中的水线,平均精密度和召回率分别为0.81和0.88,表明该方法具有利用水线法快速分析潮滩地形演变的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信