Clustering Analysis of Email Malware Campaigns

Ruichao Zhang, Shang Wang, Renée Burton, Minh Hoang, Juhua Hu, A. Nascimento
{"title":"Clustering Analysis of Email Malware Campaigns","authors":"Ruichao Zhang, Shang Wang, Renée Burton, Minh Hoang, Juhua Hu, A. Nascimento","doi":"10.1109/CSR51186.2021.9527902","DOIUrl":null,"url":null,"abstract":"The task of malware labeling on real datasets faces huge challenges—ever-changing datasets and lack of ground-truth labels—owing to the rapid growth of malware. Clustering malware on their respective families is a well known tool used for improving the efficiency of the malware labeling process. In this paper, we addressed the challenge of clustering email malware, and carried out a cluster analysis on a real dataset collected from email campaigns over a 13-month period. Our main original contribution is to analyze the usefulness of email’s header information for malware clustering (a novel approach proposed by Burton [1]), and compare it with features collected from the malware directly. We compare clustering based on email header’s information with traditional features extracted from varied resources provided by VirusTotal [2], including static and dynamic analysis. We show that email header information has an excellent performance.","PeriodicalId":253300,"journal":{"name":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR51186.2021.9527902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The task of malware labeling on real datasets faces huge challenges—ever-changing datasets and lack of ground-truth labels—owing to the rapid growth of malware. Clustering malware on their respective families is a well known tool used for improving the efficiency of the malware labeling process. In this paper, we addressed the challenge of clustering email malware, and carried out a cluster analysis on a real dataset collected from email campaigns over a 13-month period. Our main original contribution is to analyze the usefulness of email’s header information for malware clustering (a novel approach proposed by Burton [1]), and compare it with features collected from the malware directly. We compare clustering based on email header’s information with traditional features extracted from varied resources provided by VirusTotal [2], including static and dynamic analysis. We show that email header information has an excellent performance.
电子邮件恶意软件活动的聚类分析
由于恶意软件的快速增长,在真实数据集上进行恶意软件标记的任务面临着巨大的挑战——不断变化的数据集和缺乏基本事实标签。将恶意软件聚类在各自的家族上是一种众所周知的工具,用于提高恶意软件标记过程的效率。在本文中,我们解决了聚类电子邮件恶意软件的挑战,并对从13个月的电子邮件活动中收集的真实数据集进行了聚类分析。我们的主要原始贡献是分析电子邮件头信息对恶意软件聚类的有用性(Burton[1]提出的一种新方法),并将其与直接从恶意软件中收集的特征进行比较。我们比较了基于邮件头信息的聚类与从VirusTotal提供的各种资源中提取的传统特征[2],包括静态和动态分析。我们证明了电子邮件标题信息具有出色的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信