Exploiting Information From Native Data for Non-Native Automatic Pronunciation Assessment

Binghuai Lin, Liyuan Wang
{"title":"Exploiting Information From Native Data for Non-Native Automatic Pronunciation Assessment","authors":"Binghuai Lin, Liyuan Wang","doi":"10.1109/SLT54892.2023.10022486","DOIUrl":null,"url":null,"abstract":"This paper proposes an end-to-end pronunciation assessment method to exploit the adequate native data and reduce the need for non-native data costly to label. To obtain discriminative acoustic representations at the phoneme level, the pretrained wav2vec 2.0 is re-trained with connectionist temporal classification (CTC) loss for phoneme recognition using native data. These acoustic representations are fused with phoneme representations derived from a phoneme encoder to obtain final pronunciation scores. An efficient fusion mechanism aligns each phoneme with acoustic frames based on attention, where all blank frames recognized by the CTC-based phoneme recognition are masked. Finally, the whole network is optimized by a multi-task learning framework combining CTC loss and mean square error loss between predicted and human scores. Extensive experiments demonstrate that it outperforms previous baselines in the Pearson correlation coefficient even with much fewer labeled non-native data.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10022486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposes an end-to-end pronunciation assessment method to exploit the adequate native data and reduce the need for non-native data costly to label. To obtain discriminative acoustic representations at the phoneme level, the pretrained wav2vec 2.0 is re-trained with connectionist temporal classification (CTC) loss for phoneme recognition using native data. These acoustic representations are fused with phoneme representations derived from a phoneme encoder to obtain final pronunciation scores. An efficient fusion mechanism aligns each phoneme with acoustic frames based on attention, where all blank frames recognized by the CTC-based phoneme recognition are masked. Finally, the whole network is optimized by a multi-task learning framework combining CTC loss and mean square error loss between predicted and human scores. Extensive experiments demonstrate that it outperforms previous baselines in the Pearson correlation coefficient even with much fewer labeled non-native data.
利用母语数据信息进行非母语语音自动评估
本文提出了一种端到端的语音评估方法,以充分利用本地数据,减少对非本地数据的标注成本。为了在音素水平上获得判别性的声学表示,使用连接时间分类(CTC)损失对预训练的wav2vec 2.0进行重新训练,以使用本地数据进行音素识别。这些声学表征与音素表征融合,从音素编码器得到最终的发音分数。一种有效的融合机制将每个音素与基于注意力的声框架对齐,其中基于ctc的音素识别识别的所有空白框架都被掩盖。最后,通过多任务学习框架对整个网络进行优化,该框架结合了CTC损失和预测分数与人类分数之间的均方误差损失。大量的实验表明,即使标记的非本地数据少得多,它在Pearson相关系数方面也优于以前的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信