Solar power forecasting in smart grids using distributed information

R. Bessa, A. Trindade, A. Monteiro, Vladimiro Miranda, Cátia S. P. Silva
{"title":"Solar power forecasting in smart grids using distributed information","authors":"R. Bessa, A. Trindade, A. Monteiro, Vladimiro Miranda, Cátia S. P. Silva","doi":"10.1109/PSCC.2014.7038462","DOIUrl":null,"url":null,"abstract":"The growing penetration of solar power technology at low voltage (LV) level introduces new challenges in the distribution grid operation. Across the world, Distribution System Operators (DSO) are implementing the Smart Grid concept and one key function, in this new paradigm, is solar power forecasting. This paper presents a new forecasting framework, based on vector autoregression theory, that combines spatial-temporal data collected by smart meters and distribution transformer controllers to produce six-hour-ahead forecasts at the residential solar photovoltaic (PV) and secondary substation (i.e., MV/LV substation) levels. This framework has been tested for 44 micro-generation units and 10 secondary substations from the Smart Grid pilot in Évora, Portugal (one demonstration site of the EU Project SuSTAINABLE). A comparison was made with the well-known Autoregressive forecasting Model (AR-univariate model) leading to an improvement between 8% and 12% for the first 3 lead-times.","PeriodicalId":155801,"journal":{"name":"2014 Power Systems Computation Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Power Systems Computation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PSCC.2014.7038462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The growing penetration of solar power technology at low voltage (LV) level introduces new challenges in the distribution grid operation. Across the world, Distribution System Operators (DSO) are implementing the Smart Grid concept and one key function, in this new paradigm, is solar power forecasting. This paper presents a new forecasting framework, based on vector autoregression theory, that combines spatial-temporal data collected by smart meters and distribution transformer controllers to produce six-hour-ahead forecasts at the residential solar photovoltaic (PV) and secondary substation (i.e., MV/LV substation) levels. This framework has been tested for 44 micro-generation units and 10 secondary substations from the Smart Grid pilot in Évora, Portugal (one demonstration site of the EU Project SuSTAINABLE). A comparison was made with the well-known Autoregressive forecasting Model (AR-univariate model) leading to an improvement between 8% and 12% for the first 3 lead-times.
基于分布式信息的智能电网太阳能发电预测
低压太阳能发电技术的日益普及给配电网的运行带来了新的挑战。在全球范围内,配电系统运营商(DSO)正在实施智能电网概念,在这种新模式中,一个关键功能是太阳能发电预测。本文提出了一种新的预测框架,基于向量自回归理论,结合智能电表和配电变压器控制器收集的时空数据,在住宅太阳能光伏(PV)和二次变电站(即中压/低压变电站)水平上产生6小时前的预测。该框架已在葡萄牙Évora智能电网试点项目(欧盟可持续项目示范点之一)的44个微型发电机组和10个二级变电站中进行了测试。与著名的自回归预测模型(ar -单变量模型)进行比较,前3个交货期的改善幅度在8%到12%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信