R. Bar-Yehuda, K. Censor-Hillel, M. Ghaffari, Gregory Schwartzman
{"title":"Distributed Approximation of Maximum Independent Set and Maximum Matching","authors":"R. Bar-Yehuda, K. Censor-Hillel, M. Ghaffari, Gregory Schwartzman","doi":"10.1145/3087801.3087806","DOIUrl":null,"url":null,"abstract":"We present a simple distributed Δ-approximation algorithm for maximum weight independent set (MaxIS) in the CONGEST model which completes in O(MIS ⋅ log W) rounds, where Δ is the maximum degree, MIS is the number of rounds needed to compute a maximal independent set (MIS) on G, and W is the maximum weight of a node. Plugging in the best known algorithm for MIS gives a randomized solution in O(log n log W) rounds, where n is the number of nodes. We also present a deterministic O(Δ +log* n)-round algorithm based on coloring. We then show how to use our MaxIS approximation algorithms to compute a 2-approximation for maximum weight matching without incurring any additional round penalty in the CONGEST model. We use a known reduction for simulating algorithms on the line graph while incurring congestion, but we show our algorithm is part of a broad family of local aggregation algorithms for which we describe a mechanism that allows the simulation to run in the CONGEST model without an additional overhead. Next, we show that for maximum weight matching, relaxing the approximation factor to (2+ε) allows us to devise a distributed algorithm requiring O((log Δ)/(log logΔ)) rounds for any constant ε>0. For the unweighted case, we can even obtain a (1+ε)-approximation in this number of rounds. These algorithms are the first to achieve the provably optimal round complexity with respect to dependency on Δ.","PeriodicalId":324970,"journal":{"name":"Proceedings of the ACM Symposium on Principles of Distributed Computing","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087801.3087806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46
Abstract
We present a simple distributed Δ-approximation algorithm for maximum weight independent set (MaxIS) in the CONGEST model which completes in O(MIS ⋅ log W) rounds, where Δ is the maximum degree, MIS is the number of rounds needed to compute a maximal independent set (MIS) on G, and W is the maximum weight of a node. Plugging in the best known algorithm for MIS gives a randomized solution in O(log n log W) rounds, where n is the number of nodes. We also present a deterministic O(Δ +log* n)-round algorithm based on coloring. We then show how to use our MaxIS approximation algorithms to compute a 2-approximation for maximum weight matching without incurring any additional round penalty in the CONGEST model. We use a known reduction for simulating algorithms on the line graph while incurring congestion, but we show our algorithm is part of a broad family of local aggregation algorithms for which we describe a mechanism that allows the simulation to run in the CONGEST model without an additional overhead. Next, we show that for maximum weight matching, relaxing the approximation factor to (2+ε) allows us to devise a distributed algorithm requiring O((log Δ)/(log logΔ)) rounds for any constant ε>0. For the unweighted case, we can even obtain a (1+ε)-approximation in this number of rounds. These algorithms are the first to achieve the provably optimal round complexity with respect to dependency on Δ.