Low-Frequency-Stabilized Electric Field Integral Equation on Topologically Non-Trivial Geometries for Arbitrary Excitations

B. Hofmann, T. Eibert, F. Andriulli, S. Adrian
{"title":"Low-Frequency-Stabilized Electric Field Integral Equation on Topologically Non-Trivial Geometries for Arbitrary Excitations","authors":"B. Hofmann, T. Eibert, F. Andriulli, S. Adrian","doi":"10.1109/AP-S/USNC-URSI47032.2022.9886833","DOIUrl":null,"url":null,"abstract":"The low-frequency preconditioned electric field integral equation (EFIE) based on quasi-Helmholtz decompositions is widely used to determine the radiated or scattered field by a given structure over a wide frequency range. However, if the excitation source is not a plane wave but, for instance, a line current, the standard preconditioners cannot recover all current components required to accurately obtain the fields. In this work, we propose an adaptive frequency normalization scheme of the discretized system that overcomes this problem irrespective of the specific excitation and irrespective of the underlying topology of the structure. To this end, the appropriate scaling factors are derived solely based on the norms of the right-hand side (RHS) components. Numerical results demonstrate the importance of our approach to obtain accurate results.","PeriodicalId":371560,"journal":{"name":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9886833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The low-frequency preconditioned electric field integral equation (EFIE) based on quasi-Helmholtz decompositions is widely used to determine the radiated or scattered field by a given structure over a wide frequency range. However, if the excitation source is not a plane wave but, for instance, a line current, the standard preconditioners cannot recover all current components required to accurately obtain the fields. In this work, we propose an adaptive frequency normalization scheme of the discretized system that overcomes this problem irrespective of the specific excitation and irrespective of the underlying topology of the structure. To this end, the appropriate scaling factors are derived solely based on the norms of the right-hand side (RHS) components. Numerical results demonstrate the importance of our approach to obtain accurate results.
任意激励下拓扑非平凡几何的低频稳定电场积分方程
基于准亥姆霍兹分解的低频预置电场积分方程(EFIE)被广泛用于确定给定结构在宽频率范围内的辐射或散射场。但是,如果励磁源不是平面波,而是线电流,则标准预调节器无法恢复准确获取场所需的所有电流分量。在这项工作中,我们提出了一种离散系统的自适应频率归一化方案,该方案克服了这个问题,而不考虑特定的激励和结构的底层拓扑结构。为此,仅根据右侧(RHS)分量的规范推导出适当的比例因子。数值结果表明了该方法对获得准确结果的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信