Quantitative Analysis of Scalable NoSQL Databases

Surya Narayanan Swaminathan, R. Elmasri
{"title":"Quantitative Analysis of Scalable NoSQL Databases","authors":"Surya Narayanan Swaminathan, R. Elmasri","doi":"10.1109/BigDataCongress.2016.49","DOIUrl":null,"url":null,"abstract":"NoSQL databases are rapidly becoming the customary data platform for big data applications. These databases are emerging as a gateway for alternative approaches outside traditional relational databases and are characterized by efficient horizontal scalability, schema-less approach to data modeling, high performance data access, and limited querying capabilities. The lack of transactional semantics among NoSQL databases has made the choice of a particular consistency model dependent on the application. Therefore, it is essential to examine methodically, and in detail, the performance of various databases under diverse workload conditions. Three of the most commonly used NoSQL databases: MongoDB, Cassandra and HBase are evaluated using the Yahoo Cloud Service Bench-mark, a popular benchmark tool. The horizontal scalability of the three systems under different workload conditions and varying dataset sizes is captured. A benchmark suite which summarizes the results of the evaluation is presented.","PeriodicalId":407471,"journal":{"name":"2016 IEEE International Congress on Big Data (BigData Congress)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2016.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

NoSQL databases are rapidly becoming the customary data platform for big data applications. These databases are emerging as a gateway for alternative approaches outside traditional relational databases and are characterized by efficient horizontal scalability, schema-less approach to data modeling, high performance data access, and limited querying capabilities. The lack of transactional semantics among NoSQL databases has made the choice of a particular consistency model dependent on the application. Therefore, it is essential to examine methodically, and in detail, the performance of various databases under diverse workload conditions. Three of the most commonly used NoSQL databases: MongoDB, Cassandra and HBase are evaluated using the Yahoo Cloud Service Bench-mark, a popular benchmark tool. The horizontal scalability of the three systems under different workload conditions and varying dataset sizes is captured. A benchmark suite which summarizes the results of the evaluation is presented.
可扩展NoSQL数据库的定量分析
NoSQL数据库正迅速成为大数据应用的常用数据平台。这些数据库正在成为传统关系数据库之外的替代方法的门户,其特点是高效的水平可伸缩性、无模式的数据建模方法、高性能数据访问和有限的查询功能。NoSQL数据库之间缺乏事务语义,这使得选择特定的一致性模型取决于应用程序。因此,有必要有条不紊地详细检查各种数据库在不同工作负载条件下的性能。三种最常用的NoSQL数据库:MongoDB、Cassandra和HBase使用Yahoo Cloud Service benchmark(一种流行的基准测试工具)进行评估。捕获了三个系统在不同工作负载条件和不同数据集大小下的水平可伸缩性。给出了一个总结评估结果的基准套件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信