Camera Model Identification using Deep CNN and Transfer Learning Approach

Md. Hasan Al Banna, Md Ali Haider, Md. Jaber Al Nahian, M. Islam, K. A. Taher, M. S. Kaiser
{"title":"Camera Model Identification using Deep CNN and Transfer Learning Approach","authors":"Md. Hasan Al Banna, Md Ali Haider, Md. Jaber Al Nahian, M. Islam, K. A. Taher, M. S. Kaiser","doi":"10.1109/ICREST.2019.8644194","DOIUrl":null,"url":null,"abstract":"The forensic investigation on digital images is to assess the authenticity of images without the embedded security on the images. The camera model identification is the first step for image forensic investigation. The paper proposes the deep Convolutional Neural Network and transfer learning approach for extracting features from an images dataset. An open image dataset of 3900 images have been created using three camera models. Three state-of-the-art machine learning algorithms such as SVM, logistic regression and random forest based classifiers have been used for evaluating identification accuracy.","PeriodicalId":108842,"journal":{"name":"2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICREST.2019.8644194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The forensic investigation on digital images is to assess the authenticity of images without the embedded security on the images. The camera model identification is the first step for image forensic investigation. The paper proposes the deep Convolutional Neural Network and transfer learning approach for extracting features from an images dataset. An open image dataset of 3900 images have been created using three camera models. Three state-of-the-art machine learning algorithms such as SVM, logistic regression and random forest based classifiers have been used for evaluating identification accuracy.
使用深度CNN和迁移学习方法识别相机模型
数字图像的司法调查是在图像没有嵌入安全防护的情况下,对图像的真实性进行评估。摄像机模型识别是图像取证的第一步。本文提出了一种基于深度卷积神经网络和迁移学习的图像特征提取方法。使用三种相机模型创建了3900张图像的开放图像数据集。三种最先进的机器学习算法,如支持向量机、逻辑回归和基于随机森林的分类器,已被用于评估识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信