Simple Auctions with Simple Strategies

Nikhil R. Devanur, Jamie Morgenstern, Vasilis Syrgkanis, S. Weinberg
{"title":"Simple Auctions with Simple Strategies","authors":"Nikhil R. Devanur, Jamie Morgenstern, Vasilis Syrgkanis, S. Weinberg","doi":"10.1145/2764468.2764484","DOIUrl":null,"url":null,"abstract":"We introduce single-bid auctions as a new format for combinatorial auctions. In single-bid auctions, each bidder submits a single real-valued bid for the right to buy items at a fixed price. Contrary to other simple auction formats, such as simultaneous or sequential single-item auctions, bidders can implement no-regret learning strategies for single-bid auctions in polynomial time. Price of anarchy bounds for correlated equilibria concepts in single-bid auctions therefore have more bite than their counterparts for auctions and equilibria for which learning is not known to be computationally tractable (or worse, known to be computationally intractable [Cai and Papadimitriou 2014; Dobzinski et al. 2015] this end, we show that for any subadditive valuations the social welfare at equilibrium is an O(log m)-approximation to the optimal social welfare, where $m$ is the number of items. We also provide tighter approximation results for several subclasses. Our welfare guarantees hold for Nash equilibria and no-regret learning outcomes in both Bayesian and complete information settings via the smooth-mechanism framework. Of independent interest, our techniques show that in a combinatorial auction setting, efficiency guarantees of a mechanism via smoothness for a very restricted class of cardinality valuations extend, with a small degradation, to subadditive valuations, the largest complement-free class of valuations.","PeriodicalId":376992,"journal":{"name":"Proceedings of the Sixteenth ACM Conference on Economics and Computation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2764468.2764484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

We introduce single-bid auctions as a new format for combinatorial auctions. In single-bid auctions, each bidder submits a single real-valued bid for the right to buy items at a fixed price. Contrary to other simple auction formats, such as simultaneous or sequential single-item auctions, bidders can implement no-regret learning strategies for single-bid auctions in polynomial time. Price of anarchy bounds for correlated equilibria concepts in single-bid auctions therefore have more bite than their counterparts for auctions and equilibria for which learning is not known to be computationally tractable (or worse, known to be computationally intractable [Cai and Papadimitriou 2014; Dobzinski et al. 2015] this end, we show that for any subadditive valuations the social welfare at equilibrium is an O(log m)-approximation to the optimal social welfare, where $m$ is the number of items. We also provide tighter approximation results for several subclasses. Our welfare guarantees hold for Nash equilibria and no-regret learning outcomes in both Bayesian and complete information settings via the smooth-mechanism framework. Of independent interest, our techniques show that in a combinatorial auction setting, efficiency guarantees of a mechanism via smoothness for a very restricted class of cardinality valuations extend, with a small degradation, to subadditive valuations, the largest complement-free class of valuations.
简单的拍卖和简单的策略
我们引入单标拍卖作为组合拍卖的一种新形式。在单标拍卖中,每个投标人提交一个实际价值的投标,以获得以固定价格购买物品的权利。与其他简单的拍卖形式(如同时或顺序的单品拍卖)相反,竞标者可以在多项式时间内实现单品拍卖的无悔学习策略。因此,单标拍卖中相关均衡概念的无政府状态边界的价格比其对应的拍卖和均衡更具吸引力,其中学习不知道是计算可处理的(或者更糟,已知是计算难以处理的)[Cai和Papadimitriou 2014;Dobzinski et al. 2015]为此,我们表明,对于任何次加性估值,均衡状态下的社会福利都是最优社会福利的O(log m)逼近,其中$m$是项目数量。我们还为几个子类提供了更紧密的近似结果。通过平滑机制框架,我们的福利保证在贝叶斯和完全信息设置下都适用于纳什均衡和无悔学习结果。独立感兴趣的是,我们的技术表明,在组合拍卖设置中,通过非常有限的基数估值类别的平滑性来保证机制的效率,以较小的退化扩展到次加性估值,这是最大的无互补估值类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信