AFFINE MODULAR LIE ALGEBRAS

Y. Billig
{"title":"AFFINE MODULAR LIE ALGEBRAS","authors":"Y. Billig","doi":"10.1070/SM1991V070N02ABEH001387","DOIUrl":null,"url":null,"abstract":"The paper is devoted to the construction of affine Kac-Moody algebras via defining relations arising from an integral affine Cartan matrix, in the case where the ground field has positive characteristic p > 7. Explicit constructions are given for algebras obtained in this way; in distinction with the zero characteristic case they have infinite-dimensional center. A theorem on the universality of this central extension is proved, and a series of finite-dimensional factors of affine modular algebras over the ideals having trivial intersection with Cartan's subalgebra is constructed. Moreover, a construction for the PI-envelopes of affine Kac-Moody algebras is given.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1991V070N02ABEH001387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The paper is devoted to the construction of affine Kac-Moody algebras via defining relations arising from an integral affine Cartan matrix, in the case where the ground field has positive characteristic p > 7. Explicit constructions are given for algebras obtained in this way; in distinction with the zero characteristic case they have infinite-dimensional center. A theorem on the universality of this central extension is proved, and a series of finite-dimensional factors of affine modular algebras over the ideals having trivial intersection with Cartan's subalgebra is constructed. Moreover, a construction for the PI-envelopes of affine Kac-Moody algebras is given.
仿射模李代数
本文通过定义由整仿射Cartan矩阵引起的关系,讨论了在地场具有正特征p > 7的情况下仿射Kac-Moody代数的构造。给出了用这种方法得到的代数的显式结构;与零特征情况不同,它们具有无限维中心。证明了该中心推广的普适性定理,构造了一系列仿射模代数在与Cartan子代数有平凡交的理想上的有限维因子。此外,给出了仿射Kac-Moody代数的pi包络的一个构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信