Bearings-Only Tracking with Biased Measurements

M. Bugallo, Ting Lu, P. Djurić
{"title":"Bearings-Only Tracking with Biased Measurements","authors":"M. Bugallo, Ting Lu, P. Djurić","doi":"10.1109/CAMSAP.2007.4498016","DOIUrl":null,"url":null,"abstract":"This paper focuses on particle filtering techniques for tracking a single target using bearings-only measurements. The problem is formulated as fusing information collected from two or more sensors in the presence of additive noise and multiplicative/additive biases. Assuming the biases are nuisance parameters and marginalizing them out from the estimation problem, we propose an algorithm that combines a standard particle filter and one Kalman filter to efficiently resolve the fusion problem. The algorithms are tested and compared by computer simulations which offer insight into the advantages and disadvantages of the proposed method.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4498016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper focuses on particle filtering techniques for tracking a single target using bearings-only measurements. The problem is formulated as fusing information collected from two or more sensors in the presence of additive noise and multiplicative/additive biases. Assuming the biases are nuisance parameters and marginalizing them out from the estimation problem, we propose an algorithm that combines a standard particle filter and one Kalman filter to efficiently resolve the fusion problem. The algorithms are tested and compared by computer simulations which offer insight into the advantages and disadvantages of the proposed method.
带有偏差测量的方位跟踪
本文的重点是粒子滤波技术,用于跟踪一个单一的目标,使用方位测量。该问题被表述为在存在加性噪声和乘法/加性偏差的情况下融合从两个或多个传感器收集的信息。假设偏差是令人讨厌的参数并将其从估计问题中边缘化,我们提出了一种结合标准粒子滤波和卡尔曼滤波的算法来有效地解决融合问题。通过计算机模拟对算法进行了测试和比较,从而深入了解了所提出方法的优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信