A Variational Inequality Approach for One Dimensional Stefan Problem

M. Moradipour
{"title":"A Variational Inequality Approach for One Dimensional Stefan Problem","authors":"M. Moradipour","doi":"10.29252/MACO.1.2.4","DOIUrl":null,"url":null,"abstract":". In this paper, we develop a numerical method to solve a famous free boundary PDE called the one dimensional Stefan problem. First, we rewrite the PDE as a variational inequality problem (VIP). Using the linear finite element method, we discretize the variational inequality and achieve a linear complementarity problem (LCP). We present some existence and uniqueness theorems for solutions of the un-derlying variational inequalities and free boundary problems. Finally we solve the LCP numerically by applying a modification of the active set strategy.","PeriodicalId":360771,"journal":{"name":"Mathematical Analysis and Convex Optimization","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Analysis and Convex Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/MACO.1.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. In this paper, we develop a numerical method to solve a famous free boundary PDE called the one dimensional Stefan problem. First, we rewrite the PDE as a variational inequality problem (VIP). Using the linear finite element method, we discretize the variational inequality and achieve a linear complementarity problem (LCP). We present some existence and uniqueness theorems for solutions of the un-derlying variational inequalities and free boundary problems. Finally we solve the LCP numerically by applying a modification of the active set strategy.
一维Stefan问题的变分不等式方法
. 本文提出了一种求解著名的自由边界偏微分方程的数值方法,即一维Stefan问题。首先,我们将PDE问题改写为变分不等式问题。利用线性有限元方法,对变分不等式进行离散化,得到了一个线性互补问题。本文给出了基本变分不等式解和自由边界问题解的存在唯一性定理。最后,通过对活动集策略的改进,对LCP进行了数值求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信