Kamila Barylska, Lukasz Mikulski, Marcin Piatkowski, M. Koutny, Evgeny Erofeev
{"title":"Reversing Transitions in Bounded Petri Nets","authors":"Kamila Barylska, Lukasz Mikulski, Marcin Piatkowski, M. Koutny, Evgeny Erofeev","doi":"10.3233/FI-2018-1631","DOIUrl":null,"url":null,"abstract":"Reversible computation deals with mechanisms for undoing the effects of actions executed by a dynamic system. This paper is concerned with reversibility in the context of Petri nets which are a general formal model of concurrent systems. A key construction we investigate amounts to adding ‘reverse’ versions of selected net transitions. Such a static modification can severely impact on the behaviour of the system, e.g., the problem of establishing whether the modified net has the same states as the original one is undecidable. We therefore concentrate on nets with finite state spaces and show, in particular, that every transition in such nets can be reversed using a suitable finite set of new transitions.","PeriodicalId":286395,"journal":{"name":"International Workshop on Concurrency, Specification and Programming","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Concurrency, Specification and Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/FI-2018-1631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Reversible computation deals with mechanisms for undoing the effects of actions executed by a dynamic system. This paper is concerned with reversibility in the context of Petri nets which are a general formal model of concurrent systems. A key construction we investigate amounts to adding ‘reverse’ versions of selected net transitions. Such a static modification can severely impact on the behaviour of the system, e.g., the problem of establishing whether the modified net has the same states as the original one is undecidable. We therefore concentrate on nets with finite state spaces and show, in particular, that every transition in such nets can be reversed using a suitable finite set of new transitions.