{"title":"A kernel-ensemble bagging support vector machine","authors":"Ren Ye, P. N. Suganthan","doi":"10.1109/ISDA.2012.6416648","DOIUrl":null,"url":null,"abstract":"This paper proposes a kernel-ensemble bagging SVM classifier for binary class classification. The classifier is advantageous over bagging SVM classifiers because it has a two-phase grid search module, a proposed parameter randomization module and a proposed ranking module. The novel modules enhance the diversity thus improve the performance of the proposed SVM classifier. Six UCI datasets are used to evaluate the proposed kernel-ensemble bagging SVM. The result show that the proposed SVM classifier outperforms the single kernel bagging SVM classifiers.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper proposes a kernel-ensemble bagging SVM classifier for binary class classification. The classifier is advantageous over bagging SVM classifiers because it has a two-phase grid search module, a proposed parameter randomization module and a proposed ranking module. The novel modules enhance the diversity thus improve the performance of the proposed SVM classifier. Six UCI datasets are used to evaluate the proposed kernel-ensemble bagging SVM. The result show that the proposed SVM classifier outperforms the single kernel bagging SVM classifiers.