Time constrain optimal method to find the minimum architectures for feedforward neural networks

Teck-Sun Tan, G. Huang
{"title":"Time constrain optimal method to find the minimum architectures for feedforward neural networks","authors":"Teck-Sun Tan, G. Huang","doi":"10.1109/ICONIP.2002.1202189","DOIUrl":null,"url":null,"abstract":"Huang, et al. (1996, 2002) proposed architecture selection algorithm called SEDNN to find the minimum architectures for feedforward neural networks based on the Golden section search method and the upper bounds on the number of hidden neurons, as stated in Huang (2002) and Huang et al. (1998), to be 2/spl radic/((m + 2)N) or two layered feedforward network (TLFN) and N for single layer feedforward network (SLFN) where N is the number of training samples and m is the number of output neurons. The SEDNN algorithm worked well with the assumption that time allowed for the execution of the algorithm is infinite. This paper proposed an algorithm similar to the SEDNN, but with an added time factor to cater for applications that requires results within a specified period of time.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1202189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Huang, et al. (1996, 2002) proposed architecture selection algorithm called SEDNN to find the minimum architectures for feedforward neural networks based on the Golden section search method and the upper bounds on the number of hidden neurons, as stated in Huang (2002) and Huang et al. (1998), to be 2/spl radic/((m + 2)N) or two layered feedforward network (TLFN) and N for single layer feedforward network (SLFN) where N is the number of training samples and m is the number of output neurons. The SEDNN algorithm worked well with the assumption that time allowed for the execution of the algorithm is infinite. This paper proposed an algorithm similar to the SEDNN, but with an added time factor to cater for applications that requires results within a specified period of time.
前馈神经网络最小结构的时间约束优化方法
黄,et al .(1996, 2002)提出的架构选择算法称为SEDNN找到最低架构前馈神经网络基于黄金分割搜索方法和上界隐藏神经元的数量,所黄黄(2002)和et al。(1998),2 / spl·拉迪奇/ ((m + 2) N)或两层前馈网络为单层前馈网络(TLFN)和N (SLFN),其中N是训练样本的数量和m输出神经元的数量。SEDNN算法在允许执行算法的时间是无限的假设下工作得很好。本文提出了一种类似于SEDNN的算法,但增加了一个时间因子,以满足需要在指定时间段内得到结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信