Optimizing genetic algorithm parameters for multiple fault diagnosis applications

M. Juric
{"title":"Optimizing genetic algorithm parameters for multiple fault diagnosis applications","authors":"M. Juric","doi":"10.1109/CAIA.1994.323643","DOIUrl":null,"url":null,"abstract":"Multiple fault diagnosis (MFD) is the process of determining the correct fault or faults that are responsible for a given set of symptoms. Exhaustive searches or statistical analyses are usually too computationally expensive to solve these types of problems in real-time. We use a simple genetic algorithm to significantly reduce the time required to evolve a satisfactory solution. We show that when using genetic algorithms to solve these kinds of applications, best results are achieved with higher than \"normal\" mutation rates. Schemata theory is used to analyze this data and show that even though schema length increases, the Hamming distance between binary representations of best-fit chromosomes is quite small. Hamming distance is then related to schema length to show why mutation rate becomes important in this type of application.<<ETX>>","PeriodicalId":297396,"journal":{"name":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIA.1994.323643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Multiple fault diagnosis (MFD) is the process of determining the correct fault or faults that are responsible for a given set of symptoms. Exhaustive searches or statistical analyses are usually too computationally expensive to solve these types of problems in real-time. We use a simple genetic algorithm to significantly reduce the time required to evolve a satisfactory solution. We show that when using genetic algorithms to solve these kinds of applications, best results are achieved with higher than "normal" mutation rates. Schemata theory is used to analyze this data and show that even though schema length increases, the Hamming distance between binary representations of best-fit chromosomes is quite small. Hamming distance is then related to schema length to show why mutation rate becomes important in this type of application.<>
多故障诊断应用中的遗传算法参数优化
多故障诊断(MFD)是确定导致一组给定症状的一个或多个正确故障的过程。穷举搜索或统计分析通常在计算上过于昂贵,无法实时解决这类问题。我们使用一种简单的遗传算法来显著减少进化出令人满意的解所需的时间。我们表明,当使用遗传算法来解决这类应用时,获得的最佳结果高于“正常”突变率。模式理论用于分析这些数据,并表明即使模式长度增加,最适合染色体的二进制表示之间的汉明距离相当小。然后,汉明距离与模式长度相关,以说明为什么突变率在这种类型的应用程序中变得重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信