Harvesting Domain Specific Ontologies from Text

Hamid Mousavi, Deirdre Kerr, Markus R Iseli, C. Zaniolo
{"title":"Harvesting Domain Specific Ontologies from Text","authors":"Hamid Mousavi, Deirdre Kerr, Markus R Iseli, C. Zaniolo","doi":"10.1109/ICSC.2014.12","DOIUrl":null,"url":null,"abstract":"Ontologies are a vital component of most knowledge-based applications, including semantic web search, intelligent information integration, and natural language processing. In particular, we need effective tools for generating in-depth ontologies that achieve comprehensive converge of specific application domains of interest, while minimizing the time and cost of this process. Therefore we cannot rely on the manual or highly supervised approaches often used in the past, since they do not scale well. We instead propose a new approach that automatically generates domain-specific ontologies from a small corpus of documents using deep NLP-based text-mining. Starting from an initial small seed of domain concepts, our Onto Harvester system iteratively extracts ontological relations connecting existing concepts to other terms in the text, and adds strongly connected terms to the current ontology. As a result, Onto Harvester (i) remains focused on the application domain, (ii) is resistant to noise, and (iii) generates very comprehensive ontologies from modest-size document corpora. In fact, starting from a small seed, Onto Harvester produces ontologies that outperform both manually generated ontologies and ontologies generated by current techniques, even those that require very large well-focused data sets.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Ontologies are a vital component of most knowledge-based applications, including semantic web search, intelligent information integration, and natural language processing. In particular, we need effective tools for generating in-depth ontologies that achieve comprehensive converge of specific application domains of interest, while minimizing the time and cost of this process. Therefore we cannot rely on the manual or highly supervised approaches often used in the past, since they do not scale well. We instead propose a new approach that automatically generates domain-specific ontologies from a small corpus of documents using deep NLP-based text-mining. Starting from an initial small seed of domain concepts, our Onto Harvester system iteratively extracts ontological relations connecting existing concepts to other terms in the text, and adds strongly connected terms to the current ontology. As a result, Onto Harvester (i) remains focused on the application domain, (ii) is resistant to noise, and (iii) generates very comprehensive ontologies from modest-size document corpora. In fact, starting from a small seed, Onto Harvester produces ontologies that outperform both manually generated ontologies and ontologies generated by current techniques, even those that require very large well-focused data sets.
从文本中获取领域特定本体
本体是大多数基于知识的应用程序的重要组成部分,包括语义网络搜索、智能信息集成和自然语言处理。特别是,我们需要有效的工具来生成深度本体,以实现感兴趣的特定应用领域的全面收敛,同时最大限度地减少此过程的时间和成本。因此,我们不能依赖过去经常使用的手动或高度监督的方法,因为它们不能很好地扩展。我们提出了一种新的方法,使用基于深度nlp的文本挖掘,从一个小的文档语料库自动生成特定领域的本体。从最初的小领域概念种子开始,我们的Onto Harvester系统迭代地提取将现有概念与文本中其他术语连接起来的本体关系,并将强连接的术语添加到当前本体中。因此,Onto Harvester(1)仍然专注于应用领域,(2)抗噪声,(3)从中等大小的文档语料库生成非常全面的本体。事实上,从一个小种子开始,Onto Harvester产生的本体优于手动生成的本体和当前技术生成的本体,即使是那些需要非常大的集中数据集的本体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信