Improved Framework for Breast Cancer Prediction Using Frequent Itemsets Mining for Attributes Filtering

Ankita Sinha, B. Sahoo, S. Rautaray, M. Pandey
{"title":"Improved Framework for Breast Cancer Prediction Using Frequent Itemsets Mining for Attributes Filtering","authors":"Ankita Sinha, B. Sahoo, S. Rautaray, M. Pandey","doi":"10.1109/ICCS45141.2019.9065877","DOIUrl":null,"url":null,"abstract":"Data Mining is applicable for pulling up some new information by analyzing the database. It is also used for prediction based on real and actual current data. Breast cancer is a very harmful disease which effects badly to ones social, physical life and also effects mentally. This paper focuses on the attribute filtering techniques i.e frequent itemsets mining with the intention to find the essential and relevant attribute from the Wisconsin breast cancer dataset and classification algorithmic program like SVM, Naive Bayes, k-NN, Decision Tree comparison is done with attribute filtering. SVM produces beat result among all the classifier with attribute filtering.","PeriodicalId":433980,"journal":{"name":"2019 International Conference on Intelligent Computing and Control Systems (ICCS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Computing and Control Systems (ICCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCS45141.2019.9065877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Data Mining is applicable for pulling up some new information by analyzing the database. It is also used for prediction based on real and actual current data. Breast cancer is a very harmful disease which effects badly to ones social, physical life and also effects mentally. This paper focuses on the attribute filtering techniques i.e frequent itemsets mining with the intention to find the essential and relevant attribute from the Wisconsin breast cancer dataset and classification algorithmic program like SVM, Naive Bayes, k-NN, Decision Tree comparison is done with attribute filtering. SVM produces beat result among all the classifier with attribute filtering.
基于频繁项集挖掘属性过滤的乳腺癌预测改进框架
数据挖掘适用于通过分析数据库提取一些新的信息。它也用于基于真实和实际当前数据的预测。乳腺癌是一种非常有害的疾病,严重影响一个人的社会、身体和精神生活。本文重点研究了属性过滤技术,即频繁项集挖掘,旨在从威斯康星州乳腺癌数据集中找到本质和相关的属性,并通过属性过滤完成SVM、朴素贝叶斯、k-NN、决策树比较等分类算法程序。支持向量机对所有分类器进行属性过滤,产生较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信