A set theoretic approach to target detection using spectral signature statistics

David M. Rouse, H. Trussell
{"title":"A set theoretic approach to target detection using spectral signature statistics","authors":"David M. Rouse, H. Trussell","doi":"10.1109/ICIP.2004.1421594","DOIUrl":null,"url":null,"abstract":"Pixels in hyperspectral images usually contain spectra from several classifiable objects, so that the recorded pixel is a mixture of the classes. Current methods estimate the proportion of each class using a set of spectral signatures describing only the class means. Since the means are known only by estimation methods, we introduce an approach that also incorporates the variation inherent in this estimation. The total least squares approach using projections onto convex sets (POCS) produces improved performance over simple maximum likelihood methods, even one that also uses the constraint sets and POCS.","PeriodicalId":184798,"journal":{"name":"2004 International Conference on Image Processing, 2004. ICIP '04.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Image Processing, 2004. ICIP '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2004.1421594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pixels in hyperspectral images usually contain spectra from several classifiable objects, so that the recorded pixel is a mixture of the classes. Current methods estimate the proportion of each class using a set of spectral signatures describing only the class means. Since the means are known only by estimation methods, we introduce an approach that also incorporates the variation inherent in this estimation. The total least squares approach using projections onto convex sets (POCS) produces improved performance over simple maximum likelihood methods, even one that also uses the constraint sets and POCS.
基于谱特征统计的目标检测方法
高光谱图像中的像素通常包含来自多个可分类对象的光谱,因此记录的像素是这些类别的混合物。目前的方法估计每一类的比例使用一组谱签名只描述类的均值。由于只有通过估计方法才能知道均值,因此我们引入了一种方法,该方法也包含了该估计中固有的变化。使用凸集投影(POCS)的总最小二乘方法比简单的最大似然方法性能更好,即使是使用约束集和POCS的方法也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信