Toward patient identification using chest CT scan

B. Odry, H. Shen, Shuping Qing, Oliver Hauenstein
{"title":"Toward patient identification using chest CT scan","authors":"B. Odry, H. Shen, Shuping Qing, Oliver Hauenstein","doi":"10.1145/982507.982514","DOIUrl":null,"url":null,"abstract":"3D digital medical images are usually generated by computerized medical equipment such as CT scanners and MRI machines. Selected anatomic information and structures can be extracted as features from this type of volume data. These features, if unique enough, can be used to identify the patient. This can be viewed as a special field of biometrics-- identification of individuals using biological traits. As an example of implementation, we present a solution for same-patient decision in chest CT volume data. Our method uses the lung area profiles along the sagital, coronal and axial planes. The area profile curves of the two volume data are cross-correlated to find the best scale factors as well as the best offsets. The extension of this work is to evaluate the \"goodness-of-fit\" in order to classify two studies being or not from the same patient. We apply our method to 3 panels of pairs of the same patient and pairs of different patient and report classification performance.","PeriodicalId":228135,"journal":{"name":"Workshop Brasileira em Métodos Agile / Brazilian Workshop on Agile Methods","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop Brasileira em Métodos Agile / Brazilian Workshop on Agile Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/982507.982514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

3D digital medical images are usually generated by computerized medical equipment such as CT scanners and MRI machines. Selected anatomic information and structures can be extracted as features from this type of volume data. These features, if unique enough, can be used to identify the patient. This can be viewed as a special field of biometrics-- identification of individuals using biological traits. As an example of implementation, we present a solution for same-patient decision in chest CT volume data. Our method uses the lung area profiles along the sagital, coronal and axial planes. The area profile curves of the two volume data are cross-correlated to find the best scale factors as well as the best offsets. The extension of this work is to evaluate the "goodness-of-fit" in order to classify two studies being or not from the same patient. We apply our method to 3 panels of pairs of the same patient and pairs of different patient and report classification performance.
探讨利用胸部CT扫描识别病人
三维数字医学图像通常由计算机化的医疗设备生成,如CT扫描仪和核磁共振成像仪。选择的解剖信息和结构可以作为特征从这种类型的体数据中提取。这些特征,如果足够独特,可以用来识别病人。这可以被看作是生物识别的一个特殊领域——利用生物特征来识别个体。作为一个实现的例子,我们提出了一个解决方案,以同一患者的胸部CT体积数据的决策。我们的方法使用沿矢状面、冠状面和轴向面的肺面积剖面。将两个体数据的面积剖面曲线相互关联,寻找最佳尺度因子和最佳偏移量。这项工作的延伸是评估“拟合优度”,以便对两项研究是否来自同一患者进行分类。我们将我们的方法应用于3组相同患者的配对和不同患者的配对,并报告分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信