Unified Representation and Reuse of Federated Cloud Resources Configuration Knowledge

Denis Weerasiri, B. Benatallah
{"title":"Unified Representation and Reuse of Federated Cloud Resources Configuration Knowledge","authors":"Denis Weerasiri, B. Benatallah","doi":"10.1109/EDOC.2015.29","DOIUrl":null,"url":null,"abstract":"The proliferation of tools for different aspects of cloud resource configuration processes encourages DevOps to design end-to-end and automated configuration processes that span across a selection of best-of-breed tools. But heterogeneities among configuration knowledge representation models of such tools pose vital limitations for acquisition, discovery and curation of configuration knowledge for federated cloud application and resource requirements. We propose an embryonic data-model for representing cloud resource configuration knowledge artifacts. We also propose a rule based recommender service, which empowers (1) incremental knowledge acquisition and curation, and (2) declarative context driven knowledge recommendation. The paper describes the concepts, techniques and current implementation of the proposed system. Experiments on 36 real-life cloud resources show efficient re-use of configuration knowledge by our approach compared to traditional techniques.","PeriodicalId":112281,"journal":{"name":"2015 IEEE 19th International Enterprise Distributed Object Computing Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 19th International Enterprise Distributed Object Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDOC.2015.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The proliferation of tools for different aspects of cloud resource configuration processes encourages DevOps to design end-to-end and automated configuration processes that span across a selection of best-of-breed tools. But heterogeneities among configuration knowledge representation models of such tools pose vital limitations for acquisition, discovery and curation of configuration knowledge for federated cloud application and resource requirements. We propose an embryonic data-model for representing cloud resource configuration knowledge artifacts. We also propose a rule based recommender service, which empowers (1) incremental knowledge acquisition and curation, and (2) declarative context driven knowledge recommendation. The paper describes the concepts, techniques and current implementation of the proposed system. Experiments on 36 real-life cloud resources show efficient re-use of configuration knowledge by our approach compared to traditional techniques.
联邦云资源配置知识的统一表示与重用
针对云资源配置流程不同方面的工具的激增,鼓励DevOps设计端到端和自动化的配置流程,这些流程跨越了最佳工具的选择。但是,这些工具的配置知识表示模型之间的异构性对联邦云应用程序和资源需求的配置知识的获取、发现和管理构成了重大限制。我们提出了一个胚胎数据模型来表示云资源配置知识工件。我们还提出了一个基于规则的推荐服务,它支持(1)增量知识获取和管理,以及(2)声明性上下文驱动的知识推荐。本文描述了该系统的概念、技术和目前的实现情况。在36个实际云资源上的实验表明,与传统技术相比,我们的方法可以有效地重用配置知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信