Vocabulary Expansion Using Word Vectors for Video Semantic Indexing

Nakamasa Inoue, Koichi Shinoda
{"title":"Vocabulary Expansion Using Word Vectors for Video Semantic Indexing","authors":"Nakamasa Inoue, Koichi Shinoda","doi":"10.1145/2733373.2806347","DOIUrl":null,"url":null,"abstract":"We propose vocabulary expansion for video semantic indexing. From many semantic concept detectors obtained by using training data, we make detectors for concepts not included in training data. First, we introduce Mikolov's word vectors to represent a word by a low-dimensional vector. Second, we represent a new concept by a weighted sum of concepts in training data in the word vector space. Finally, we use the same weighting coefficients for combining detectors to make a new detector. In our experiments, we evaluate our methods on the TRECVID Video Semantic Indexing (SIN) Task. We train our models with Google News text documents and ImageNET images to generate new semantic detectors for SIN task. We show that our method performs as well as SVMs trained with 100 TRECVID ex- ample videos.","PeriodicalId":427170,"journal":{"name":"Proceedings of the 23rd ACM international conference on Multimedia","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2733373.2806347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose vocabulary expansion for video semantic indexing. From many semantic concept detectors obtained by using training data, we make detectors for concepts not included in training data. First, we introduce Mikolov's word vectors to represent a word by a low-dimensional vector. Second, we represent a new concept by a weighted sum of concepts in training data in the word vector space. Finally, we use the same weighting coefficients for combining detectors to make a new detector. In our experiments, we evaluate our methods on the TRECVID Video Semantic Indexing (SIN) Task. We train our models with Google News text documents and ImageNET images to generate new semantic detectors for SIN task. We show that our method performs as well as SVMs trained with 100 TRECVID ex- ample videos.
使用词向量进行视频语义索引的词汇扩展
我们提出了视频语义索引的词汇扩展。利用训练数据得到的许多语义概念检测器,对训练数据中未包含的概念制作检测器。首先,我们引入Mikolov词向量,用一个低维向量来表示一个词。其次,我们通过在单词向量空间中对训练数据中的概念进行加权和来表示一个新的概念。最后,我们使用相同的加权系数来组合检测器,从而得到一个新的检测器。在我们的实验中,我们在TRECVID视频语义索引(SIN)任务上评估了我们的方法。我们用Google News文本文档和ImageNET图像训练我们的模型,为SIN任务生成新的语义检测器。我们用100个TRECVID示例视频证明了我们的方法与svm训练的效果一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信