Effect of confidence and explanation on accuracy and trust calibration in AI-assisted decision making

Yunfeng Zhang, Q. Liao, R. Bellamy
{"title":"Effect of confidence and explanation on accuracy and trust calibration in AI-assisted decision making","authors":"Yunfeng Zhang, Q. Liao, R. Bellamy","doi":"10.1145/3351095.3372852","DOIUrl":null,"url":null,"abstract":"Today, AI is being increasingly used to help human experts make decisions in high-stakes scenarios. In these scenarios, full automation is often undesirable, not only due to the significance of the outcome, but also because human experts can draw on their domain knowledge complementary to the model's to ensure task success. We refer to these scenarios as AI-assisted decision making, where the individual strengths of the human and the AI come together to optimize the joint decision outcome. A key to their success is to appropriately calibrate human trust in the AI on a case-by-case basis; knowing when to trust or distrust the AI allows the human expert to appropriately apply their knowledge, improving decision outcomes in cases where the model is likely to perform poorly. This research conducts a case study of AI-assisted decision making in which humans and AI have comparable performance alone, and explores whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI. Specifically, we study the effect of showing confidence score and local explanation for a particular prediction. Through two human experiments, we show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making, which may also depend on whether the human can bring in enough unique knowledge to complement the AI's errors. We also highlight the problems in using local explanation for AI-assisted decision making scenarios and invite the research community to explore new approaches to explainability for calibrating human trust in AI.","PeriodicalId":377829,"journal":{"name":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"369","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3351095.3372852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 369

Abstract

Today, AI is being increasingly used to help human experts make decisions in high-stakes scenarios. In these scenarios, full automation is often undesirable, not only due to the significance of the outcome, but also because human experts can draw on their domain knowledge complementary to the model's to ensure task success. We refer to these scenarios as AI-assisted decision making, where the individual strengths of the human and the AI come together to optimize the joint decision outcome. A key to their success is to appropriately calibrate human trust in the AI on a case-by-case basis; knowing when to trust or distrust the AI allows the human expert to appropriately apply their knowledge, improving decision outcomes in cases where the model is likely to perform poorly. This research conducts a case study of AI-assisted decision making in which humans and AI have comparable performance alone, and explores whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI. Specifically, we study the effect of showing confidence score and local explanation for a particular prediction. Through two human experiments, we show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making, which may also depend on whether the human can bring in enough unique knowledge to complement the AI's errors. We also highlight the problems in using local explanation for AI-assisted decision making scenarios and invite the research community to explore new approaches to explainability for calibrating human trust in AI.
置信度和解释对人工智能辅助决策准确性和信任校准的影响
如今,人工智能正越来越多地用于帮助人类专家在高风险情况下做出决策。在这些场景中,完全自动化通常是不可取的,不仅是因为结果的重要性,还因为人类专家可以利用他们的领域知识来补充模型,以确保任务成功。我们将这些场景称为人工智能辅助决策,其中人类和人工智能的个人优势结合在一起,以优化共同的决策结果。他们成功的关键在于根据具体情况适当调整人类对人工智能的信任;知道何时信任或不信任人工智能可以让人类专家适当地应用他们的知识,在模型可能表现不佳的情况下改善决策结果。本研究对人工智能辅助决策进行了案例研究,其中人类和人工智能单独具有可比的性能,并探讨揭示特定于案例的模型信息的特征是否可以校准信任并提高人类和人工智能的联合性能。具体来说,我们研究了显示置信分数和局部解释对特定预测的影响。通过两个人体实验,我们发现置信度得分可以帮助校准人们对人工智能模型的信任,但仅靠信任校准不足以改善人工智能辅助决策,这还可能取决于人类是否能够带来足够的独特知识来弥补人工智能的错误。我们还强调了在人工智能辅助决策场景中使用本地解释的问题,并邀请研究界探索可解释性的新方法,以校准人类对人工智能的信任。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信