Fast triangle counting on the GPU

Oded Green, Pavan Yalamanchili, Lluís-Miquel Munguía
{"title":"Fast triangle counting on the GPU","authors":"Oded Green, Pavan Yalamanchili, Lluís-Miquel Munguía","doi":"10.1109/IA3.2014.7","DOIUrl":null,"url":null,"abstract":"Triangle counting in a graph is a building block for clustering coefficients which is a widely used social network analytic for finding key players in a network based on their local connectivity. In this paper we show the first scalable GPU implementation for triangle counting. Our approach uses a new list intersection algorithm called Intersect Path (named after the Merge Path algorithm). This algorithm has two levels of parallelism. The first level partitions the vertices to the streaming multiprocessors on the GPU. The second level is responsible for parallelizing the work across the GPU's streaming processors and utilizing different block sizes. For testing purposes, we used graphs taken from the DIMACS 10 Graph Challenge. Our experiments were conducted on NVIDIA's K40 GPU. Our GPU triangle counting implementation achieves speedups in the range of 9X -- 32X over a CPU sequential implementation.","PeriodicalId":208146,"journal":{"name":"Workshop on Irregular Applications: Architectures and Algorithms","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Irregular Applications: Architectures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IA3.2014.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

Abstract

Triangle counting in a graph is a building block for clustering coefficients which is a widely used social network analytic for finding key players in a network based on their local connectivity. In this paper we show the first scalable GPU implementation for triangle counting. Our approach uses a new list intersection algorithm called Intersect Path (named after the Merge Path algorithm). This algorithm has two levels of parallelism. The first level partitions the vertices to the streaming multiprocessors on the GPU. The second level is responsible for parallelizing the work across the GPU's streaming processors and utilizing different block sizes. For testing purposes, we used graphs taken from the DIMACS 10 Graph Challenge. Our experiments were conducted on NVIDIA's K40 GPU. Our GPU triangle counting implementation achieves speedups in the range of 9X -- 32X over a CPU sequential implementation.
GPU上的快速三角形计数
图中的三角形计数是聚类系数的构建块,聚类系数是一种广泛使用的社交网络分析方法,用于根据网络中的局部连通性找到网络中的关键参与者。在本文中,我们展示了第一个可扩展的三角形计数GPU实现。我们的方法使用了一种新的列表交叉算法,称为Intersect Path(以Merge Path算法命名)。该算法具有两级并行性。第一层将顶点划分到GPU上的流多处理器。第二层负责跨GPU的流处理器并行化工作,并利用不同的块大小。出于测试目的,我们使用了取自DIMACS 10 Graph Challenge的图表。我们的实验在NVIDIA的K40 GPU上进行。我们的GPU三角形计数实现在CPU顺序实现的基础上实现了9X - 32X的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信