Fault Leakage Detection From Pressure Transient Analysis

A. Shchipanov, L. Kollbotn, R. Berenblyum
{"title":"Fault Leakage Detection From Pressure Transient Analysis","authors":"A. Shchipanov, L. Kollbotn, R. Berenblyum","doi":"10.3997/2214-4609.201802990","DOIUrl":null,"url":null,"abstract":"Leakage of reservoir fluids from injection site, e.g. through faults, is one of the key risks associated with long-term CO2 geological storage. Leakage monitoring technologies applied at different levels: in-situ, groundwater and surface, are necessary to ensure safe CO2 storage. Development and testing of the monitoring technologies is an objective of the ENOS project. In this paper, in-situ leakage detection from analysis of well bottom hole pressure is discussed. Modern CO2 injection wells are usually equipped with Permanent Downhole Gauges (PDGs), providing pressure measurements during the whole well life-span including injection and shut-in periods. A practical way to apply Pressure Transient Analysis (PTA) to such measurements for leakage detection is in the focus. A simulated well test of near-fault water injection into saline aquifer was employed to evaluate capabilities of PTA in detecting leakage through the fault. These mechanistic reservoir simulations were followed by similar simulations on an actual geological setting. A reservoir segment of the potential LBr-1 injection site containing a fault was used to demonstrate PTA-based leakage detection under actual geological conditions. Both simulation studies have confirmed that the PTA-based detection may be a useful component of the multi-level leakage monitoring technologies relying on readily available facilities (PDGs).","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth CO2 Geological Storage Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201802990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Leakage of reservoir fluids from injection site, e.g. through faults, is one of the key risks associated with long-term CO2 geological storage. Leakage monitoring technologies applied at different levels: in-situ, groundwater and surface, are necessary to ensure safe CO2 storage. Development and testing of the monitoring technologies is an objective of the ENOS project. In this paper, in-situ leakage detection from analysis of well bottom hole pressure is discussed. Modern CO2 injection wells are usually equipped with Permanent Downhole Gauges (PDGs), providing pressure measurements during the whole well life-span including injection and shut-in periods. A practical way to apply Pressure Transient Analysis (PTA) to such measurements for leakage detection is in the focus. A simulated well test of near-fault water injection into saline aquifer was employed to evaluate capabilities of PTA in detecting leakage through the fault. These mechanistic reservoir simulations were followed by similar simulations on an actual geological setting. A reservoir segment of the potential LBr-1 injection site containing a fault was used to demonstrate PTA-based leakage detection under actual geological conditions. Both simulation studies have confirmed that the PTA-based detection may be a useful component of the multi-level leakage monitoring technologies relying on readily available facilities (PDGs).
基于压力瞬态分析的故障泄漏检测
油藏流体从注入地点泄漏,例如通过断层,是与长期二氧化碳地质储存相关的主要风险之一。泄漏监测技术应用于不同层面:原位、地下水和地表,是确保CO2安全储存的必要条件。监测技术的开发和测试是ENOS项目的一个目标。本文讨论了利用井底压力分析进行现场泄漏检测的方法。现代CO2注水井通常配备永久性井下压力表(PDGs),在整个井寿命期间(包括注入和关井期间)提供压力测量。一种实用的方法,应用压力瞬变分析(PTA)的测量泄漏检测是重点。通过模拟咸水含水层近断层注水试井,评价了PTA检测断层渗漏的能力。这些机理油藏模拟之后,在实际地质环境中进行了类似的模拟。在实际地质条件下,利用含有断层的潜在LBr-1注入点的储层段进行了基于pta的泄漏检测。两项模拟研究都证实了基于pta的检测可能是依赖现成设施(PDGs)的多级泄漏监测技术的有用组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信