Stereo Cross Global Learnable Attention Module for Stereo Image Super-Resolution

Yuanbo Zhou, Yuyang Xue, Wei Deng, Ruofeng Nie, Jiajun Zhang, Jiaqi Pu, Qinquan Gao, Junlin Lan, T. Tong
{"title":"Stereo Cross Global Learnable Attention Module for Stereo Image Super-Resolution","authors":"Yuanbo Zhou, Yuyang Xue, Wei Deng, Ruofeng Nie, Jiajun Zhang, Jiaqi Pu, Qinquan Gao, Junlin Lan, T. Tong","doi":"10.1109/CVPRW59228.2023.00146","DOIUrl":null,"url":null,"abstract":"Stereo super-resolution is a technique that utilizes corresponding information from multiple viewpoints to enhance the texture of low-resolution images. In recent years, numerous impressive works have advocated attention mechanisms based on epipolar constraints to boost the performance of stereo super-resolution. However, techniques that exclusively depend on epipolar constraint attention are insufficient to recover realistic and natural textures for heavily corrupted low-resolution images. We noticed that global self-similarity features within the image and across the views can proficiently fix the texture details of low-resolution images that are severely damaged. Therefore, in the current paper, we propose a stereo cross global learnable attention module (SCGLAM), aiming to improve the performance of stereo super-resolution. The experimental outcomes show that our approach outperforms others when dealing with heavily damaged low-resolution images. The relevant code is made available on this link as open source.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Stereo super-resolution is a technique that utilizes corresponding information from multiple viewpoints to enhance the texture of low-resolution images. In recent years, numerous impressive works have advocated attention mechanisms based on epipolar constraints to boost the performance of stereo super-resolution. However, techniques that exclusively depend on epipolar constraint attention are insufficient to recover realistic and natural textures for heavily corrupted low-resolution images. We noticed that global self-similarity features within the image and across the views can proficiently fix the texture details of low-resolution images that are severely damaged. Therefore, in the current paper, we propose a stereo cross global learnable attention module (SCGLAM), aiming to improve the performance of stereo super-resolution. The experimental outcomes show that our approach outperforms others when dealing with heavily damaged low-resolution images. The relevant code is made available on this link as open source.
立体图像超分辨率立体交叉全局可学习注意力模块
立体超分辨率是一种利用多个视点的相应信息来增强低分辨率图像纹理的技术。近年来,许多令人印象深刻的研究都提出了基于极外约束的注意机制来提高立体超分辨率的性能。然而,仅依赖极外约束注意力的技术不足以恢复严重损坏的低分辨率图像的真实和自然纹理。我们注意到,图像内部和视图之间的全局自相似特征可以熟练地修复严重受损的低分辨率图像的纹理细节。因此,本文提出了一种立体跨全局可学习注意模块(SCGLAM),旨在提高立体超分辨率的性能。实验结果表明,在处理严重受损的低分辨率图像时,我们的方法优于其他方法。相关代码可以在这个链接上以开放源代码的形式获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信