A 3D algorithm for unsupervised face identification

A. Lagorio, Marinella Cadoni, E. Grosso, M. Tistarelli
{"title":"A 3D algorithm for unsupervised face identification","authors":"A. Lagorio, Marinella Cadoni, E. Grosso, M. Tistarelli","doi":"10.1109/IWBF.2015.7110239","DOIUrl":null,"url":null,"abstract":"With the increasing availability of low-cost 3D data acquisition devices, the use of 3D face data for the recognition of individuals is becoming more appealing and computationally feasible. This paper proposes a completely automatic algorithm for face registration and matching. The algorithm is based on the extraction of stable 3D facial features characterizing the face and the subsequent construction of a signature manifold. The facial features are extracted by performing a continuous-to-discrete scale-space analysis. Registration is driven from the matching of triplets of feature points and the registration error is computed as shape matching score. Conversely to most techniques in the literature, a major advantage of the proposed method is that no data pre-processing is required. Therefore all presented results have been obtained exclusively from the raw data available from the 3D acquisition device. The method has been tested on the Bosphorus 3D face database and the performances compared to the ICP baseline algorithm. Even in presence of noise in the data, the algorithm proved to be very robust and reported identification performances which are aligned to the current state of the art, but without requiring any pre-processing of the raw data.","PeriodicalId":416816,"journal":{"name":"3rd International Workshop on Biometrics and Forensics (IWBF 2015)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Workshop on Biometrics and Forensics (IWBF 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF.2015.7110239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the increasing availability of low-cost 3D data acquisition devices, the use of 3D face data for the recognition of individuals is becoming more appealing and computationally feasible. This paper proposes a completely automatic algorithm for face registration and matching. The algorithm is based on the extraction of stable 3D facial features characterizing the face and the subsequent construction of a signature manifold. The facial features are extracted by performing a continuous-to-discrete scale-space analysis. Registration is driven from the matching of triplets of feature points and the registration error is computed as shape matching score. Conversely to most techniques in the literature, a major advantage of the proposed method is that no data pre-processing is required. Therefore all presented results have been obtained exclusively from the raw data available from the 3D acquisition device. The method has been tested on the Bosphorus 3D face database and the performances compared to the ICP baseline algorithm. Even in presence of noise in the data, the algorithm proved to be very robust and reported identification performances which are aligned to the current state of the art, but without requiring any pre-processing of the raw data.
无监督人脸识别的三维算法
随着低成本3D数据采集设备的日益普及,使用3D人脸数据进行个人识别变得越来越有吸引力,并且在计算上是可行的。提出了一种完全自动化的人脸配准与匹配算法。该算法是基于稳定的三维人脸特征的提取和随后的特征流形的构建。通过执行连续到离散的尺度空间分析来提取面部特征。从特征点的三元组匹配驱动配准,配准误差作为形状匹配分数计算。与文献中的大多数技术相反,该方法的一个主要优点是不需要数据预处理。因此,所有呈现的结果都是完全从三维采集设备提供的原始数据中获得的。该方法已在博斯普鲁斯海峡三维人脸数据库上进行了测试,并与ICP基线算法进行了性能比较。即使在数据中存在噪声,该算法也被证明是非常鲁棒的,并且报告了与当前技术状态一致的识别性能,但不需要对原始数据进行任何预处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信