Adaptive-Size Reservoir Sampling over Data Streams

Mohammed Al-Kateb, B. Lee, X. Wang
{"title":"Adaptive-Size Reservoir Sampling over Data Streams","authors":"Mohammed Al-Kateb, B. Lee, X. Wang","doi":"10.1109/SSDBM.2007.29","DOIUrl":null,"url":null,"abstract":"Reservoir sampling is a well-known technique for sequential random sampling over data streams. Conventional reservoir sampling assumes a fixed-size reservoir. There are situations, however, in which it is necessary and/or advantageous to adaptively adjust the size of a reservoir in the middle of sampling due to changes in data characteristics and/or application behavior. This paper studies adaptive size reservoir sampling over data streams considering two main factors: reservoir size and sample uniformity. First, the paper conducts a theoretical study on the effects of adjusting the size of a reservoir while sampling is in progress. The theoretical results show that such an adjustment may bring a negative impact on the probability of the sample being uniform (called uniformity confidence herein). Second, the paper presents a novel algorithm for maintaining the reservoir sample after the reservoir size is adjusted such that the resulting uniformity confidence exceeds a given threshold. Third, the paper extends the proposed algorithm to an adaptive multi-reservoir sampling algorithm for a practical application in which samples are collected from memory-limited wireless sensor networks using a mobile sink. Finally, the paper empirically examines the adaptivity of the multi-reservoir sampling algorithm with regard to reservoir size and sample uniformity using real sensor networks data sets.","PeriodicalId":122925,"journal":{"name":"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDBM.2007.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

Reservoir sampling is a well-known technique for sequential random sampling over data streams. Conventional reservoir sampling assumes a fixed-size reservoir. There are situations, however, in which it is necessary and/or advantageous to adaptively adjust the size of a reservoir in the middle of sampling due to changes in data characteristics and/or application behavior. This paper studies adaptive size reservoir sampling over data streams considering two main factors: reservoir size and sample uniformity. First, the paper conducts a theoretical study on the effects of adjusting the size of a reservoir while sampling is in progress. The theoretical results show that such an adjustment may bring a negative impact on the probability of the sample being uniform (called uniformity confidence herein). Second, the paper presents a novel algorithm for maintaining the reservoir sample after the reservoir size is adjusted such that the resulting uniformity confidence exceeds a given threshold. Third, the paper extends the proposed algorithm to an adaptive multi-reservoir sampling algorithm for a practical application in which samples are collected from memory-limited wireless sensor networks using a mobile sink. Finally, the paper empirically examines the adaptivity of the multi-reservoir sampling algorithm with regard to reservoir size and sample uniformity using real sensor networks data sets.
数据流上自适应大小的储层采样
储层采样是一种众所周知的对数据流进行顺序随机采样的技术。常规的储层采样假设一个固定大小的储层。然而,在某些情况下,由于数据特征和/或应用行为的变化,在采样过程中自适应地调整储层的大小是必要的和/或有利的。考虑储层尺寸和样本均匀性两个主要因素,研究了基于数据流的自适应储层尺寸采样方法。首先,对采样过程中调整储层尺寸的效果进行了理论研究。理论结果表明,这种调整可能会对样本均匀的概率(本文称为均匀置信度)产生负面影响。其次,本文提出了一种新的算法,用于在油藏大小调整后使所得均匀度置信度超过给定阈值后保持油藏样本。第三,本文将提出的算法扩展为一种实际应用的自适应多库采样算法,其中使用移动接收器从内存有限的无线传感器网络中收集样本。最后,利用真实的传感器网络数据集,实证检验了多储层采样算法在储层大小和样本均匀性方面的自适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信