G. Bacci, Giovanni Bacci, K. Larsen, M. Tribastone, Max Tschaikowski, Andrea Vandin
{"title":"Efficient Local Computation of Differential Bisimulations via Coupling and Up-to Methods","authors":"G. Bacci, Giovanni Bacci, K. Larsen, M. Tribastone, Max Tschaikowski, Andrea Vandin","doi":"10.1109/LICS52264.2021.9470555","DOIUrl":null,"url":null,"abstract":"We introduce polynomial couplings, a generalization of probabilistic couplings, to develop an algorithm for the computation of equivalence relations which can be interpreted as a lifting of probabilistic bisimulation to polynomial differential equations, a ubiquitous model of dynamical systems across science and engineering. The algorithm enjoys polynomial time complexity and complements classical partition-refinement approaches because: (a) it implements a local exploration of the system, possibly yielding equivalences that do not necessarily involve the inspection of the whole system of differential equations; (b) it can be enhanced by up-to techniques; and (c) it allows the specification of pairs which ought not be included in the output. Using a prototype, these advantages are demonstrated on case studies from systems biology for applications to model reduction and comparison. Notably, we report four orders of magnitude smaller runtimes than partition-refinement approaches when disproving equivalences between Markov chains.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We introduce polynomial couplings, a generalization of probabilistic couplings, to develop an algorithm for the computation of equivalence relations which can be interpreted as a lifting of probabilistic bisimulation to polynomial differential equations, a ubiquitous model of dynamical systems across science and engineering. The algorithm enjoys polynomial time complexity and complements classical partition-refinement approaches because: (a) it implements a local exploration of the system, possibly yielding equivalences that do not necessarily involve the inspection of the whole system of differential equations; (b) it can be enhanced by up-to techniques; and (c) it allows the specification of pairs which ought not be included in the output. Using a prototype, these advantages are demonstrated on case studies from systems biology for applications to model reduction and comparison. Notably, we report four orders of magnitude smaller runtimes than partition-refinement approaches when disproving equivalences between Markov chains.