Micro Reality Mining of a Cell Phone Usage Behavior: A General Bayesian Network Approach

S. Chae, Min Hee Hahn, K. Lee
{"title":"Micro Reality Mining of a Cell Phone Usage Behavior: A General Bayesian Network Approach","authors":"S. Chae, Min Hee Hahn, K. Lee","doi":"10.1109/UCMA.2011.34","DOIUrl":null,"url":null,"abstract":"Successful products and services result from a keen awareness of the micro motives and factors underlying consumer behavior in the real world. Similarly, the success of ubiquitous decision support systems is heavily dependent on the capability of micro-reality mining from consumer behavior data. Micro-reality mining is defined by the system's ability to extract a set of trivial but meaningful rules of action from consumer behavior data. This study is based on the hard fact that such trivialness leads to the macro behavior of consumers. As an example of successful micro-reality mining, this paper proposes a new method based on General Bayesian Network (GBN). Using MIT students' real life data, we applied GBN and obtained a set of causal relationships among a set of relevant variables. The what-if and goal-seeking simulations with the causal relationships supported by GBN allowed us to explore the usefulness of GBN-driven micro-reality data mining.","PeriodicalId":172729,"journal":{"name":"2011 International Conference on Ubiquitous Computing and Multimedia Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Ubiquitous Computing and Multimedia Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCMA.2011.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Successful products and services result from a keen awareness of the micro motives and factors underlying consumer behavior in the real world. Similarly, the success of ubiquitous decision support systems is heavily dependent on the capability of micro-reality mining from consumer behavior data. Micro-reality mining is defined by the system's ability to extract a set of trivial but meaningful rules of action from consumer behavior data. This study is based on the hard fact that such trivialness leads to the macro behavior of consumers. As an example of successful micro-reality mining, this paper proposes a new method based on General Bayesian Network (GBN). Using MIT students' real life data, we applied GBN and obtained a set of causal relationships among a set of relevant variables. The what-if and goal-seeking simulations with the causal relationships supported by GBN allowed us to explore the usefulness of GBN-driven micro-reality data mining.
手机使用行为的微观现实挖掘:一种通用贝叶斯网络方法
成功的产品和服务源于对现实世界中消费者行为背后的微观动机和因素的敏锐认识。同样,无处不在的决策支持系统的成功在很大程度上依赖于从消费者行为数据中挖掘微现实的能力。微现实挖掘是指系统从消费者行为数据中提取一组琐碎但有意义的行动规则的能力。这项研究是基于这样一个确凿的事实,即这种琐碎会导致消费者的宏观行为。作为微现实挖掘的成功案例,本文提出了一种基于通用贝叶斯网络(GBN)的新方法。我们使用MIT学生的真实生活数据,应用GBN,得到一组相关变量之间的一组因果关系。由GBN支持的因果关系的假设和目标寻求模拟使我们能够探索由GBN驱动的微现实数据挖掘的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信